Search Options

Results per page
Sort
Preferred Languages
Advance

Results 141 - 150 of 713 for Pydantic (0.69 sec)

  1. docs/pt/docs/python-types.md

    Perceba que isso significa que "`one_person` é uma **instância** da classe `Person`".
    
    Isso não significa que "`one_person` é a **classe** chamada `Person`".
    
    ## Modelos Pydantic { #pydantic-models }
    
    O <a href="https://docs.pydantic.dev/" class="external-link" target="_blank">Pydantic</a> é uma biblioteca Python para executar a validação de dados.
    
    Você declara a "forma" dos dados como classes com atributos.
    
    E cada atributo tem um tipo.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 16.7K bytes
    - Viewed (0)
  2. docs/es/docs/python-types.md

    Nota que esto significa "`one_person` es una **instance** de la clase `Person`".
    
    No significa "`one_person` es la **clase** llamada `Person`".
    
    ## Modelos Pydantic { #pydantic-models }
    
    <a href="https://docs.pydantic.dev/" class="external-link" target="_blank">Pydantic</a> es un paquete de Python para realizar la validación de datos.
    
    Declaras la "forma" de los datos como clases con atributos.
    
    Y cada atributo tiene un tipo.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 16.4K bytes
    - Viewed (1)
  3. tests/test_datetime_custom_encoder.py

    from datetime import datetime, timezone
    
    from fastapi import FastAPI
    from fastapi.testclient import TestClient
    from pydantic import BaseModel
    
    
    def test_pydanticv2():
        from pydantic import field_serializer
    
        class ModelWithDatetimeField(BaseModel):
            dt_field: datetime
    
            @field_serializer("dt_field")
            def serialize_datetime(self, dt_field: datetime):
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 27 12:54:56 UTC 2025
    - 817 bytes
    - Viewed (0)
  4. docs/ko/docs/tutorial/header-param-models.md

    # 헤더 매개변수 모델
    
    관련 있는 **헤더 매개변수** 그룹이 있는 경우, **Pydantic 모델**을 생성하여 선언할 수 있습니다.
    
    이를 통해 **여러 위치**에서 **모델을 재사용** 할 수 있고 모든 매개변수에 대한 유효성 검사 및 메타데이터를 한 번에 선언할 수도 있습니다. 😎
    
    /// note | 참고
    
    이 기능은 FastAPI 버전 `0.115.0` 이후부터 지원됩니다. 🤓
    
    ///
    
    ## Pydantic 모델을 사용한 헤더 매개변수
    
    **Pydantic 모델**에 필요한 **헤더 매개변수**를 선언한 다음, 해당 매개변수를 `Header`로 선언합니다:
    
    {* ../../docs_src/header_param_models/tutorial001_an_py310.py hl[9:14,18] *}
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Dec 09 12:45:39 UTC 2024
    - 2K bytes
    - Viewed (0)
  5. requirements-github-actions.txt

    PyGithub>=2.3.0,<3.0.0
    pydantic>=2.5.3,<3.0.0
    pydantic-settings>=2.1.0,<3.0.0
    httpx>=0.27.0,<1.0.0
    pyyaml >=5.3.1,<7.0.0
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Thu Sep 18 08:09:33 UTC 2025
    - 131 bytes
    - Viewed (0)
  6. docs/en/docs/python-types.md

    Notice that this means "`one_person` is an **instance** of the class `Person`".
    
    It doesn't mean "`one_person` is the **class** called `Person`".
    
    ## Pydantic models { #pydantic-models }
    
    <a href="https://docs.pydantic.dev/" class="external-link" target="_blank">Pydantic</a> is a Python library to perform data validation.
    
    You declare the "shape" of the data as classes with attributes.
    
    And each attribute has a type.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 15.6K bytes
    - Viewed (0)
  7. docs/ja/docs/tutorial/cookie-param-models.md

    もし関連する**複数のクッキー**から成るグループがあるなら、それらを宣言するために、**Pydanticモデル**を作成できます。🍪
    
    こうすることで、**複数の場所**で**そのPydanticモデルを再利用**でき、バリデーションやメタデータを、すべてのクッキーパラメータに対して一度に宣言できます。😎
    
    /// note | 備考
    
    この機能は、FastAPIのバージョン `0.115.0` からサポートされています。🤓
    
    ///
    
    /// tip | 豆知識
    
    これと同じテクニックは `Query` 、 `Cookie` 、 `Header` にも適用できます。 😎
    
    ///
    
    ## クッキーにPydanticモデルを使用する
    
    必要な複数の**クッキー**パラメータを**Pydanticモデル**で宣言し、さらに、それを `Cookie` として宣言しましょう:
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Feb 28 14:21:27 UTC 2025
    - 4.5K bytes
    - Viewed (0)
  8. fastapi/routing.py

                Any,
                Doc(
                    """
                    The type to use for the response.
    
                    It could be any valid Pydantic *field* type. So, it doesn't have to
                    be a Pydantic model, it could be other things, like a `list`, `dict`,
                    etc.
    
                    It will be used for:
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 27 12:54:56 UTC 2025
    - 174.6K bytes
    - Viewed (0)
  9. pyproject.toml

        # To validate email fields
        "email-validator >=2.0.0",
        # Uvicorn with uvloop
        "uvicorn[standard] >=0.12.0",
        # # Settings management
        "pydantic-settings >=2.0.0",
        # # Extra Pydantic data types
        "pydantic-extra-types >=2.0.0",
    ]
    
    standard-no-fastapi-cloud-cli = [
        "fastapi-cli[standard-no-fastapi-cloud-cli] >=0.0.8",
        # For the test client
        "httpx >=0.23.0,<1.0.0",
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 27 12:54:56 UTC 2025
    - 9.3K bytes
    - Viewed (0)
  10. docs/zh/docs/tutorial/body-updates.md

    但本指南也会分别介绍这两种操作各自的用途。
    
    ///
    
    ### 使用 Pydantic 的 `exclude_unset` 参数
    
    更新部分数据时,可以在 Pydantic 模型的 `.dict()` 中使用 `exclude_unset` 参数。
    
    比如,`item.dict(exclude_unset=True)`。
    
    这段代码生成的 `dict` 只包含创建 `item` 模型时显式设置的数据,而不包括默认值。
    
    然后再用它生成一个只含已设置(在请求中所发送)数据,且省略了默认值的 `dict`:
    
    {* ../../docs_src/body_updates/tutorial002.py hl[34] *}
    
    ### 使用 Pydantic 的 `update` 参数
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 3.5K bytes
    - Viewed (0)
Back to top