Search Options

Results per page
Sort
Preferred Languages
Advance

Results 121 - 130 of 941 for ModelA (0.03 sec)

  1. docs/pt/docs/tutorial/body-fields.md

    /// warning | Atenção
    
    Note que `Field` é importado diretamente do `pydantic`, não do `fastapi` como todo o resto (`Query`, `Path`, `Body`, etc).
    
    ///
    
    ## Declare atributos do modelo { #declare-model-attributes }
    
    Você pode então utilizar `Field` com atributos do modelo:
    
    {* ../../docs_src/body_fields/tutorial001_an_py310.py hl[11:14] *}
    
    `Field` funciona da mesma forma que `Query`, `Path` e `Body`, ele possui todos os mesmos parâmetros, etc.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Nov 12 16:23:57 UTC 2025
    - 2.6K bytes
    - Viewed (0)
  2. docs/en/docs/tutorial/schema-extra-example.md

    Here are several ways to do it.
    
    ## Extra JSON Schema data in Pydantic models { #extra-json-schema-data-in-pydantic-models }
    
    You can declare `examples` for a Pydantic model that will be added to the generated JSON Schema.
    
    {* ../../docs_src/schema_extra_example/tutorial001_py310.py hl[13:24] *}
    
    That extra info will be added as-is to the output **JSON Schema** for that model, and it will be used in the API docs.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 20 15:55:38 UTC 2025
    - 8.9K bytes
    - Viewed (0)
  3. docs/pt/docs/tutorial/body-updates.md

    * Recuperar os dados armazenados.
    * Colocar esses dados em um modelo do Pydantic.
    * Gerar um `dict` sem valores padrão a partir do modelo de entrada (usando `exclude_unset`).
        * Dessa forma, você pode atualizar apenas os valores definidos pelo usuário, em vez de substituir os valores já armazenados com valores padrão em seu modelo.
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Nov 12 16:23:57 UTC 2025
    - 5.1K bytes
    - Viewed (0)
  4. docs/pt/docs/tutorial/body.md

    {* ../../docs_src/body/tutorial001_py310.py hl[2] *}
    
    ## Crie seu modelo de dados { #create-your-data-model }
    
    Então você declara seu modelo de dados como uma classe que herda `BaseModel`.
    
    Utilize os tipos Python padrão para todos os atributos:
    
    {* ../../docs_src/body/tutorial001_py310.py hl[5:9] *}
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 7.9K bytes
    - Viewed (0)
  5. docs/es/docs/tutorial/body-fields.md

    Fíjate que `Field` se importa directamente desde `pydantic`, no desde `fastapi` como el resto (`Query`, `Path`, `Body`, etc).
    
    ///
    
    ## Declarar atributos del modelo { #declare-model-attributes }
    
    Después puedes utilizar `Field` con los atributos del modelo:
    
    {* ../../docs_src/body_fields/tutorial001_an_py310.py hl[11:14] *}
    
    `Field` funciona de la misma manera que `Query`, `Path` y `Body`, tiene todos los mismos parámetros, etc.
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Tue Dec 16 16:33:45 UTC 2025
    - 2.6K bytes
    - Viewed (0)
  6. fastapi/security/base.py

    from fastapi.openapi.models import SecurityBase as SecurityBaseModel
    
    
    class SecurityBase:
        model: SecurityBaseModel
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Dec 07 15:12:16 UTC 2018
    - 141 bytes
    - Viewed (0)
  7. impl/maven-cli/src/main/java/org/apache/maven/cling/invoker/mvnup/goals/ModelVersionUtils.java

            }
    
            return false;
        }
    
        /**
         * Checks if a model version is eligible for inference optimizations.
         * Models 4.0.0+ are eligible (4.0.0 has limited inference, 4.1.0+ has full inference).
         *
         * @param modelVersion the model version to check
         * @return true if eligible for inference
         */
    Registered: Sun Dec 28 03:35:09 UTC 2025
    - Last Modified: Tue Nov 18 18:03:26 UTC 2025
    - 9.5K bytes
    - Viewed (0)
  8. docs/zh/docs/tutorial/response-model.md

    因此,**FastAPI** 将会负责过滤掉未在输出模型中声明的所有数据(使用 Pydantic)。
    
    ## 在文档中查看
    
    当你查看自动化文档时,你可以检查输入模型和输出模型是否都具有自己的 JSON Schema:
    
    <img src="https://fastapi.tiangolo.com/img/tutorial/response-model/image01.png">
    
    并且两种模型都将在交互式 API 文档中使用:
    
    <img src="https://fastapi.tiangolo.com/img/tutorial/response-model/image02.png">
    
    ## 响应模型编码参数
    
    你的响应模型可以具有默认值,例如:
    
    {* ../../docs_src/response_model/tutorial004.py hl[11,13:14] *}
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 6.9K bytes
    - Viewed (0)
  9. docs_src/events/tutorial003_py39.py

        return x * 42
    
    
    ml_models = {}
    
    
    @asynccontextmanager
    async def lifespan(app: FastAPI):
        # Load the ML model
        ml_models["answer_to_everything"] = fake_answer_to_everything_ml_model
        yield
        # Clean up the ML models and release the resources
        ml_models.clear()
    
    
    app = FastAPI(lifespan=lifespan)
    
    
    @app.get("/predict")
    async def predict(x: float):
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 569 bytes
    - Viewed (0)
  10. impl/maven-cli/pom.xml

            <artifactId>modello-maven-plugin</artifactId>
            <configuration>
              <version>1.2.0</version>
              <models>
                <model>../../api/maven-api-cli/src/main/mdo/core-extensions.mdo</model>
              </models>
              <templates>
                <template>reader-stax.vm</template>
                <template>writer-stax.vm</template>
              </templates>
              <params>
    Registered: Sun Dec 28 03:35:09 UTC 2025
    - Last Modified: Tue Nov 18 18:03:26 UTC 2025
    - 10.2K bytes
    - Viewed (0)
Back to top