- Sort Score
- Result 10 results
- Languages All
Results 11 - 20 of 163 for cpu (0.05 sec)
-
cmd/update.go
cpuMap[cpus[i].PhysicalID] = struct{}{} coreMap[cpus[i].CoreID] = struct{}{} } cpu := cpus[0] uaAppend(" CPU ", fmt.Sprintf("(total_cpus:%d, total_cores:%d; vendor:%s; family:%s; model:%s; stepping:%d; model_name:%s)", len(cpuMap), len(coreMap), cpu.VendorID, cpu.Family, cpu.Model, cpu.Stepping, cpu.ModelName)) } uaAppend(")", "") return strings.Join(userAgentParts, "") }
Registered: Sun Dec 28 19:28:13 UTC 2025 - Last Modified: Sun Sep 28 20:59:21 UTC 2025 - 18.9K bytes - Viewed (0) -
docs/tuning/tuned.conf
[main] summary=Maximum server performance for MinIO [vm] transparent_hugepage=madvise [sysfs] /sys/kernel/mm/transparent_hugepage/defrag=defer+madvise /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none=0 [cpu] force_latency=1 governor=performance energy_perf_bias=performance min_perf_pct=100 [sysctl] fs.xfs.xfssyncd_centisecs=72000 net.core.busy_read=50 net.core.busy_poll=50 kernel.numa_balancing=1
Registered: Sun Dec 28 19:28:13 UTC 2025 - Last Modified: Fri Jul 12 23:31:18 UTC 2024 - 1.9K bytes - Viewed (0) -
docs/pt/docs/deployment/concepts.md
Nesse caso, seria melhor ter apenas 2 servidores e usar uma porcentagem maior de seus recursos (CPU, memória, disco, largura de banda de rede, etc).
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Nov 12 16:23:57 UTC 2025 - 20.5K bytes - Viewed (0) -
docs/zh/docs/deployment/concepts.md
## 资源利用率 您的服务器是一个**资源**,您可以通过您的程序消耗或**利用**CPU 上的计算时间以及可用的 RAM 内存。 您想要消耗/利用多少系统资源? 您可能很容易认为“不多”,但实际上,您可能希望在不崩溃的情况下**尽可能多地消耗**。 如果您支付了 3 台服务器的费用,但只使用了它们的一点点 RAM 和 CPU,那么您可能**浪费金钱** 💸,并且可能 **浪费服务器电力** 🌎,等等。 在这种情况下,最好只拥有 2 台服务器并使用更高比例的资源(CPU、内存、磁盘、网络带宽等)。 另一方面,如果您有 2 台服务器,并且正在使用 **100% 的 CPU 和 RAM**,则在某些时候,一个进程会要求更多内存,并且服务器将不得不使用磁盘作为“内存” (这可能会慢数千倍),甚至**崩溃**。 或者一个进程可能需要执行一些计算,并且必须等到 CPU 再次空闲。
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 16.2K bytes - Viewed (0) -
ci/official/envs/linux_arm64
TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --repo_env=USE_PYWRAP_RULES=True --config release_arm64_linux" TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_arm64 # Note: this is not set to "--cpu", because that changes the package name # to tensorflow_cpu. These ARM builds are supposed to have the name "tensorflow" # despite lacking Nvidia CUDA support. TFCI_BUILD_PIP_PACKAGE_WHEEL_NAME_ARG="--repo_env=WHEEL_NAME=tensorflow"
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Sat Dec 13 00:14:04 UTC 2025 - 1.6K bytes - Viewed (0) -
docs/es/docs/deployment/concepts.md
En ese caso, podría ser mejor tener solo 2 servidores y usar un mayor porcentaje de sus recursos (CPU, memoria, disco, ancho de banda de red, etc.).
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 16 16:33:45 UTC 2025 - 20.1K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/helper/SystemHelper.java
} } /** * Calibrates the CPU load. * * @return true if the CPU load is within the acceptable range, false otherwise. */ public boolean calibrateCpuLoad() { return calibrateCpuLoad(0L); } /** * Calibrates the CPU load with a timeout. * * @param timeoutInMillis The timeout in milliseconds.Registered: Sat Dec 20 09:19:18 UTC 2025 - Last Modified: Sat Dec 20 08:30:43 UTC 2025 - 36.6K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
In diesem Fall könnte es besser sein, nur zwei Server zu haben und einen höheren Prozentsatz von deren Ressourcen zu nutzen (CPU, Arbeitsspeicher, Festplatte, Netzwerkbandbreite, usw.).
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Tue Dec 02 17:32:56 UTC 2025 - 21.5K bytes - Viewed (0) -
docs/en/docs/deployment/concepts.md
In that case, it could be better to have only 2 servers and use a higher percentage of their resources (CPU, memory, disk, network bandwidth, etc).
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 18.6K bytes - Viewed (1) -
ci/official/utilities/rename_and_verify_wheels.sh
if [[ "$TFCI_WHL_NUMPY_VERSION" == 1 ]]; then # Uninstall tf nightly wheel built with numpy1. "$python" -m pip uninstall -y tf_nightly_numpy1 # Install tf nightly cpu wheel built with numpy2.x from PyPI in numpy1.x env. "$python" -m pip install tf-nightly-cpu if [[ "$TFCI_WHL_IMPORT_TEST_ENABLE" == "1" ]]; then "$python" -c 'import tensorflow as tf; t1=tf.constant([1,2,3,4]); t2=tf.constant([5,6,7,8]); print(tf.add(t1,t2).shape)'
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Mon Sep 22 21:39:32 UTC 2025 - 4.4K bytes - Viewed (0)