- Sort Score
- Result 10 results
- Languages All
Results 81 - 90 of 176 for vowels (0.03 sec)
-
docs/en/docs/release-notes.md
@app.get("/items/") async def read_items(filter_query: Annotated[FilterParams, Query()]): return filter_query ``` Read the new docs: [Query Parameter Models](https://fastapi.tiangolo.com/tutorial/query-param-models/). #### `Header` Parameter Models Use Pydantic models for `Header` parameters: ```python from typing import Annotated from fastapi import FastAPI, Header from pydantic import BaseModel
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Fri Sep 05 12:48:45 UTC 2025 - 544.1K bytes - Viewed (0) -
api/maven-api-core/src/main/java/org/apache/maven/api/services/ToolchainFactory.java
import org.apache.maven.api.annotations.Nonnull; import org.apache.maven.api.toolchain.ToolchainModel; /** * Factory interface for creating toolchain instances from configuration models. * * <p>This factory is responsible for instantiating concrete toolchain implementations * based on toolchain model configurations or default settings.</p> * * @since 4.0.0 */ @Experimental @Consumer
Registered: Sun Sep 07 03:35:12 UTC 2025 - Last Modified: Tue Feb 11 12:33:57 UTC 2025 - 2.1K bytes - Viewed (0) -
docs/es/docs/tutorial/security/simple-oauth2.md
hashed_password = user_dict["hashed_password"], ) ``` /// info | Información Para una explicación más completa de `**user_dict` revisa en [la documentación para **Extra Models**](../extra-models.md#about-user_indict){.internal-link target=_blank}. /// ## Devolver el token El response del endpoint `token` debe ser un objeto JSON.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Dec 30 18:26:57 UTC 2024 - 9.9K bytes - Viewed (0) -
docs/en/docs/tutorial/schema-extra-example.md
# Declare Request Example Data { #declare-request-example-data } You can declare examples of the data your app can receive. Here are several ways to do it. ## Extra JSON Schema data in Pydantic models { #extra-json-schema-data-in-pydantic-models } You can declare `examples` for a Pydantic model that will be added to the generated JSON Schema. //// tab | Pydantic v2 {* ../../docs_src/schema_extra_example/tutorial001_py310.py hl[13:24] *}
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 9.6K bytes - Viewed (0) -
api/maven-api-model/src/main/java/org/apache/maven/api/model/InputSource.java
/** * Represents the source of a model input, such as a POM file. * <p> * This class tracks the origin of model elements, including their location in source files * and relationships between imported models. It's used for error reporting and debugging * to help identify where specific model elements came from. * * @since 4.0.0 */ public class InputSource implements Serializable { private final String modelId;
Registered: Sun Sep 07 03:35:12 UTC 2025 - Last Modified: Thu Apr 03 13:33:59 UTC 2025 - 3.8K bytes - Viewed (0) -
docs/en/docs/advanced/path-operation-advanced-configuration.md
You probably have seen how to declare the `response_model` and `status_code` for a *path operation*. That defines the metadata about the main response of a *path operation*. You can also declare additional responses with their models, status codes, etc. There's a whole chapter here in the documentation about it, you can read it at [Additional Responses in OpenAPI](additional-responses.md){.internal-link target=_blank}. ## OpenAPI Extra { #openapi-extra }
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 7.8K bytes - Viewed (0) -
compat/maven-compat/pom.xml
<artifactId>modello-maven-plugin</artifactId> <configuration> <version>1.0.0</version> <models> <model>src/main/mdo/profiles.mdo</model> <model>src/main/mdo/paramdoc.mdo</model> </models> </configuration> <executions> <execution> <id>modello</id> <goals>
Registered: Sun Sep 07 03:35:12 UTC 2025 - Last Modified: Sun Jun 29 22:37:39 UTC 2025 - 7.8K bytes - Viewed (0) -
docs/en/docs/advanced/settings.md
Import `BaseSettings` from Pydantic and create a sub-class, very much like with a Pydantic model. The same way as with Pydantic models, you declare class attributes with type annotations, and possibly default values. You can use all the same validation features and tools you use for Pydantic models, like different data types and additional validations with `Field()`. //// tab | Pydantic v2
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 12.2K bytes - Viewed (0) -
README.md
## Resources * [TensorFlow.org](https://www.tensorflow.org) * [TensorFlow Tutorials](https://www.tensorflow.org/tutorials/) * [TensorFlow Official Models](https://github.com/tensorflow/models/tree/master/official) * [TensorFlow Examples](https://github.com/tensorflow/examples) * [TensorFlow Codelabs](https://codelabs.developers.google.com/?cat=TensorFlow)
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Fri Jul 18 14:09:03 UTC 2025 - 11.6K bytes - Viewed (0) -
migrator.go
// apply scopes to migrator for len(tx.Statement.scopes) > 0 { tx = tx.executeScopes() } return tx.Dialector.Migrator(tx.Session(&Session{})) } // AutoMigrate run auto migration for given models func (db *DB) AutoMigrate(dst ...interface{}) error { return db.Migrator().AutoMigrate(dst...) } // ViewOption view option type ViewOption struct {
Registered: Sun Sep 07 09:35:13 UTC 2025 - Last Modified: Mon Oct 30 09:15:49 UTC 2023 - 3.1K bytes - Viewed (0)