- Sort Score
- Result 10 results
- Languages All
Results 71 - 74 of 74 for 0123 (0.07 sec)
-
internal/s3select/csv/testdata/testdata.zip
06:33:33,2014-03-07 06:58:54,N,1,-73.893325805664063,40.757320404052734,-73.913200378417969,40.67413330078125,1,12.40,36,0,0.5,1,0,,,37.5,1,,129,177,green,0.00,3.9,0.0,37,26,7.83,1298,309.02,4,Queens,030902,4030902,E,QN28,Jackson Heights,4102,2142,365.01,3,Brooklyn,036501,3036501,E,BK79,Ocean Hill,4007^3389488,1,2014-03-03 09:57:36,2014-03-03 10:08:28,N,1,-73.897117614746094,40.754409790039063,-73.927032470703125,40.747509002685547,1,1.90,10,0,0.5,2.1,0,,,12.6,1,,129,226,green,0.04,5.1,0.1,32,17,6.7...
Registered: Sun Dec 28 19:28:13 UTC 2025 - Last Modified: Tue Jun 01 21:59:40 UTC 2021 - 111.6K bytes - Viewed (0) -
lib/fips140/v1.1.0-rc1.zip
x119 uint64 _, x119 = bits.Add64(x99, x113, uint64(0x0)) var x120 uint64 var x121 uint64 x120, x121 = bits.Add64(x101, x115, uint64(p256Uint1(x119))) var x122 uint64 var x123 uint64 x122, x123 = bits.Add64(x103, x117, uint64(p256Uint1(x121))) var x124 uint64 var x125 uint64 x124, x125 = bits.Add64(x105, x109, uint64(p256Uint1(x123))) var x126 uint64 var x127 uint64 x126, x127 = bits.Add64(x107, x110, uint64(p256Uint1(x125))) x128 := (uint64(p256Uint1(x127)) + uint64(p256Uint1(x108))) var x129 uint64...
Registered: Tue Dec 30 11:13:12 UTC 2025 - Last Modified: Thu Dec 11 16:27:41 UTC 2025 - 663K bytes - Viewed (0) -
CHANGELOG/CHANGELOG-1.13.md
* Updates to use debian-iptables v11.0, debian-hyperkube-base 0.12.0, and kube-addon-manager:v8.9. ([#70209](https://github.com/kubernetes/kubernetes/pull/70209), [@ixdy](https://github.com/ixdy))
Registered: Fri Dec 26 09:05:12 UTC 2025 - Last Modified: Thu May 05 13:44:43 UTC 2022 - 273.1K bytes - Viewed (0) -
RELEASE.md
mean, var = tf.nn.moments(self.kernel, axes=[0, 1, 2], keepdims=True) return self.convolution_op(inputs, (self.kernel - mean) / tf.sqrt(var + 1e-10))` Alternatively, you can override `convolution_op`: `python class StandardizedConv2D(tf.keras.Layer): def convolution_op(self, inputs, kernel): mean, var = tf.nn.moments(kernel, axes=[0, 1, 2], keepdims=True) # Author code uses std + 1e-5 return
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Tue Oct 28 22:27:41 UTC 2025 - 740.4K bytes - Viewed (3)