- Sort Score
- Result 10 results
- Languages All
Results 41 - 50 of 613 for Learning (0.09 sec)
-
README.md
"article" ); suggester.indexer().indexFromDocument(reader, 4, 50); ``` ### Search Analytics ```java // Track user queries for analytics QueryLog userQuery = new QueryLog("machine learning tutorials", "user456"); suggester.indexer().indexFromQueryLog(userQuery); // Get trending searches PopularWordsResponse trending = suggester.popularWords() .setSize(10) .execute() .getResponse();
Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Sun Aug 31 03:31:14 UTC 2025 - 12.1K bytes - Viewed (1) -
docs/en/docs/deployment/concepts.md
### Memory per Process { #memory-per-process } Now, when the program loads things in memory, for example, a machine learning model in a variable, or the contents of a large file in a variable, all that **consumes a bit of the memory (RAM)** of the server.Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 18.6K bytes - Viewed (0) -
docs/tr/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *} İstemci tarafında şuna benzer bir JSON yanıtı ile karşılaşırsınız: ```JSON { "model_name": "alexnet", "message": "Deep Learning FTW!" } ``` ## Yol İçeren Yol Parametreleri Farz edelim ki elinizde `/files/{file_path}` isminde bir *yol operasyonu* var.Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 10:29:01 UTC 2025 - 10.5K bytes - Viewed (0) -
docs/de/docs/async.md
* **Maschinelles Lernen**: Normalerweise sind viele „Matrix“- und „Vektor“-Multiplikationen erforderlich. Stellen Sie sich eine riesige Tabelle mit Zahlen vor, in der Sie alle Zahlen gleichzeitig multiplizieren.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 26.5K bytes - Viewed (0) -
docs/en/docs/python-types.md
**FastAPI** is all based on these type hints, they give it many advantages and benefits. But even if you never use **FastAPI**, you would benefit from learning a bit about them. /// note If you are a Python expert, and you already know everything about type hints, skip to the next chapter. /// ## Motivation { #motivation } Let's start with a simple example:Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:15:41 UTC 2025 - 17.1K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
### Serverspeicher Wenn Ihr Code beispielsweise ein Machine-Learning-Modell mit **1 GB Größe** lädt und Sie einen Prozess mit Ihrer API ausführen, verbraucht dieser mindestens 1 GB RAM. Und wenn Sie **4 Prozesse** (4 Worker) starten, verbraucht jeder 1 GB RAM. Insgesamt verbraucht Ihre API also **4 GB RAM**.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 20.6K bytes - Viewed (0) -
docs/es/docs/deployment/docker.md
Si tu aplicación es **simple**, probablemente esto **no será un problema**, y puede que no necesites especificar límites de memoria estrictos. Pero si estás **usando mucha memoria** (por ejemplo, con modelos de **Machine Learning**), deberías verificar cuánta memoria estás consumiendo y ajustar el **número de contenedores** que se ejecutan en **cada máquina** (y tal vez agregar más máquinas a tu cluster).
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Fri May 30 13:15:52 UTC 2025 - 31K bytes - Viewed (0) -
docs/tr/docs/index.md
## Görüşler "_[...] Bugünlerde **FastAPI**'ı çok fazla kullanıyorum. [...] Aslında bunu ekibimin **Microsoft'taki Machine Learning servislerinin** tamamında kullanmayı planlıyorum. Bunlardan bazıları **Windows**'un ana ürünlerine ve **Office** ürünlerine entegre ediliyor._"
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 10:49:48 UTC 2025 - 21.9K bytes - Viewed (0) -
RELEASE.md
* Added warmup capabilities to `tf.keras.optimizers.schedules.CosineDecay` learning rate scheduler. You can now specify an initial and target learning rate, and our scheduler will perform a linear interpolation between the two after which it will begin a decay phase.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Aug 18 20:54:38 UTC 2025 - 740K bytes - Viewed (2) -
docs/pt/docs/deployment/concepts.md
### Memória do servidor Por exemplo, se seu código carrega um modelo de Machine Learning com **1 GB de tamanho**, quando você executa um processo com sua API, ele consumirá pelo menos 1 GB de RAM. E se você iniciar **4 processos** (4 trabalhadores), cada um consumirá 1 GB de RAM. Então, no total, sua API consumirá **4 GB de RAM**.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 19.7K bytes - Viewed (0)