Search Options

Results per page
Sort
Preferred Languages
Advance

Results 41 - 50 of 613 for Learning (0.09 sec)

  1. README.md

        "article"
    );
    suggester.indexer().indexFromDocument(reader, 4, 50);
    ```
    
    ### Search Analytics
    
    ```java
    // Track user queries for analytics
    QueryLog userQuery = new QueryLog("machine learning tutorials", "user456");
    suggester.indexer().indexFromQueryLog(userQuery);
    
    // Get trending searches
    PopularWordsResponse trending = suggester.popularWords()
        .setSize(10)
        .execute()
        .getResponse();
    Registered: Fri Sep 19 09:08:11 UTC 2025
    - Last Modified: Sun Aug 31 03:31:14 UTC 2025
    - 12.1K bytes
    - Viewed (1)
  2. docs/en/docs/deployment/concepts.md

    ### Memory per Process { #memory-per-process }
    
    Now, when the program loads things in memory, for example, a machine learning model in a variable, or the contents of a large file in a variable, all that **consumes a bit of the memory (RAM)** of the server.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 18.6K bytes
    - Viewed (0)
  3. docs/tr/docs/tutorial/path-params.md

    {* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *}
    
    İstemci tarafında şuna benzer bir JSON yanıtı ile karşılaşırsınız:
    
    ```JSON
    {
      "model_name": "alexnet",
      "message": "Deep Learning FTW!"
    }
    ```
    
    ## Yol İçeren Yol Parametreleri
    
    Farz edelim ki elinizde `/files/{file_path}` isminde bir *yol operasyonu* var.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:29:01 UTC 2025
    - 10.5K bytes
    - Viewed (0)
  4. docs/de/docs/async.md

    * **Maschinelles Lernen**: Normalerweise sind viele „Matrix“- und „Vektor“-Multiplikationen erforderlich. Stellen Sie sich eine riesige Tabelle mit Zahlen vor, in der Sie alle Zahlen gleichzeitig multiplizieren.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 26.5K bytes
    - Viewed (0)
  5. docs/en/docs/python-types.md

    **FastAPI** is all based on these type hints, they give it many advantages and benefits.
    
    But even if you never use **FastAPI**, you would benefit from learning a bit about them.
    
    /// note
    
    If you are a Python expert, and you already know everything about type hints, skip to the next chapter.
    
    ///
    
    ## Motivation { #motivation }
    
    Let's start with a simple example:
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 17.1K bytes
    - Viewed (0)
  6. docs/de/docs/deployment/concepts.md

    ### Serverspeicher
    
    Wenn Ihr Code beispielsweise ein Machine-Learning-Modell mit **1 GB Größe** lädt und Sie einen Prozess mit Ihrer API ausführen, verbraucht dieser mindestens 1 GB RAM. Und wenn Sie **4 Prozesse** (4 Worker) starten, verbraucht jeder 1 GB RAM. Insgesamt verbraucht Ihre API also **4 GB RAM**.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun May 11 13:37:26 UTC 2025
    - 20.6K bytes
    - Viewed (0)
  7. docs/es/docs/deployment/docker.md

    Si tu aplicación es **simple**, probablemente esto **no será un problema**, y puede que no necesites especificar límites de memoria estrictos. Pero si estás **usando mucha memoria** (por ejemplo, con modelos de **Machine Learning**), deberías verificar cuánta memoria estás consumiendo y ajustar el **número de contenedores** que se ejecutan en **cada máquina** (y tal vez agregar más máquinas a tu cluster).
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Fri May 30 13:15:52 UTC 2025
    - 31K bytes
    - Viewed (0)
  8. docs/tr/docs/index.md

    ## Görüşler
    
    "_[...] Bugünlerde **FastAPI**'ı çok fazla kullanıyorum. [...] Aslında bunu ekibimin **Microsoft'taki Machine Learning servislerinin** tamamında kullanmayı planlıyorum. Bunlardan bazıları **Windows**'un ana ürünlerine ve **Office** ürünlerine entegre ediliyor._"
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 10:49:48 UTC 2025
    - 21.9K bytes
    - Viewed (0)
  9. RELEASE.md

    *   Added warmup capabilities to `tf.keras.optimizers.schedules.CosineDecay` learning rate scheduler. You can now specify an initial and target learning rate, and our scheduler will perform a linear interpolation between the two after which it will begin a decay phase.
    Registered: Tue Sep 09 12:39:10 UTC 2025
    - Last Modified: Mon Aug 18 20:54:38 UTC 2025
    - 740K bytes
    - Viewed (2)
  10. docs/pt/docs/deployment/concepts.md

    ### Memória do servidor
    
    Por exemplo, se seu código carrega um modelo de Machine Learning com **1 GB de tamanho**, quando você executa um processo com sua API, ele consumirá pelo menos 1 GB de RAM. E se você iniciar **4 processos** (4 trabalhadores), cada um consumirá 1 GB de RAM. Então, no total, sua API consumirá **4 GB de RAM**.
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun May 11 13:37:26 UTC 2025
    - 19.7K bytes
    - Viewed (0)
Back to top