- Sort Score
- Result 10 results
- Languages All
Results 21 - 30 of 62 for muda (0.03 sec)
-
ci/official/containers/ml_build/Dockerfile
RUN ln -sf /usr/bin/python3.12 /usr/bin/python RUN ln -sf /usr/lib/python3.12 /usr/lib/tf_python # Link the compat driver to the location if available. RUN if [ -e "/usr/local/cuda/compat/libcuda.so.1" ]; then ln -s /usr/local/cuda/compat/libcuda.so.1 /usr/lib/x86_64-linux-gnu/libcuda.so.1; fi # Install various tools. # - bats: bash unit testing framework # - bazelisk: always use the correct bazel version
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Thu Dec 18 21:55:23 UTC 2025 - 4.5K bytes - Viewed (0) -
ci/official/containers/ml_build/README.md
WIP ML Build Docker container for ML repositories (Tensorflow, JAX and XLA). This container branches off from /tensorflow/tools/tf_sig_build_dockerfiles/. However, since hermetic CUDA and hermetic Python is now available for Tensorflow, a lot of the requirements installed on the original container can be removed to reduce the footprint of the container and make it more reusable across different ML
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Tue Sep 24 20:45:58 UTC 2024 - 416 bytes - Viewed (0) -
docs/pt/docs/advanced/settings.md
Em muitos casos, sua aplicação pode precisar de configurações externas, por exemplo chaves secretas, credenciais de banco de dados, credenciais para serviços de e-mail, etc. A maioria dessas configurações é variável (pode mudar), como URLs de banco de dados. E muitas podem ser sensíveis, como segredos. Por esse motivo, é comum fornecê-las em variáveis de ambiente lidas pela aplicação. /// tip | Dica
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 17 20:41:43 UTC 2025 - 13K bytes - Viewed (0) -
.github/ISSUE_TEMPLATE/tflite-other.md
- type: input id: Compiler attributes: label: GCC/Compiler version description: if compiling from source placeholder: validations: required: false - type: input id: Cuda attributes: label: CUDA/cuDNN version description: placeholder: validations: required: false - type: input id: Gpu attributes: label: GPU model and memory description: ifRegistered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Thu Dec 29 22:28:29 UTC 2022 - 3.4K bytes - Viewed (0) -
tensorflow/BUILD
# Config setting that is satisfied when TensorFlow is being built with CUDA # support through e.g. `--config=cuda` (or `--config=cuda_clang` in OSS). alias( name = "is_cuda_enabled", actual = if_oss( "@local_config_cuda//:is_cuda_enabled", "@local_config_cuda//cuda:using_config_cuda", ), ) # Config setting that is satisfied when CUDA device code should be compiledRegistered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Wed Nov 12 19:21:56 UTC 2025 - 53.1K bytes - Viewed (0) -
ci/official/README.md
These "env" files match up with an environment matrix that roughly covers: - Different Python versions - Linux, MacOS, and Windows machines (these pool definitions are internal) - x86 and arm64 - CPU-only, or with NVIDIA CUDA support (Linux only), or with TPUs ## How to Test Your Changes to TensorFlow You may check how your changes will affect TensorFlow by: 1. Creating a PR and observing the presubmit test results
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Thu Feb 01 03:21:19 UTC 2024 - 8K bytes - Viewed (0) -
ci/official/requirements_updater/BUILD.bazel
load("@python_version_repo//:py_version.bzl", "REQUIREMENTS") load("@rules_python//python:pip.bzl", "compile_pip_requirements") # TODO(ybaturina): Remove once TF is migrated to CUDA 12.9. genrule( name = "nvidia_constraints", srcs = ["nvidia-requirements.txt"], outs = ["nvidia-constraints.txt"], cmd = """sed -E "s/>=/==/" $(location nvidia-requirements.txt) > $@;""", )Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Thu Sep 18 19:30:45 UTC 2025 - 1.4K bytes - Viewed (0) -
.github/ISSUE_TEMPLATE/tensorflow_issue_template.yaml
description: If compiling from source - type: input id: Compiler attributes: label: GCC/compiler version description: If compiling from source - type: input id: Cuda attributes: label: CUDA/cuDNN version - type: input id: Gpu attributes: label: GPU model and memory description: If compiling from source - type: textarea id: what-happenedRegistered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Wed Jun 28 18:25:42 UTC 2023 - 3.7K bytes - Viewed (0) -
ci/official/envs/linux_arm64
TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_arm64 # Note: this is not set to "--cpu", because that changes the package name # to tensorflow_cpu. These ARM builds are supposed to have the name "tensorflow" # despite lacking Nvidia CUDA support. TFCI_BUILD_PIP_PACKAGE_WHEEL_NAME_ARG="--repo_env=WHEEL_NAME=tensorflow" TFCI_DOCKER_ENABLE=1 TFCI_DOCKER_IMAGE=us-docker.pkg.dev/ml-oss-artifacts-published/ml-public-container/ml-build-arm64:latest
Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Sat Dec 13 00:14:04 UTC 2025 - 1.6K bytes - Viewed (0) -
ci/official/libtensorflow.sh
# limitations under the License. # ============================================================================== source "${BASH_SOURCE%/*}/utilities/setup.sh" # Record GPU count and CUDA version status if [[ "$TFCI_NVIDIA_SMI_ENABLE" == 1 ]]; then tfrun nvidia-smi fi # Update the version numbers for Nightly only if [[ "$TFCI_NIGHTLY_UPDATE_VERSION_ENABLE" == 1 ]]; then python_bin=python3Registered: Tue Dec 30 12:39:10 UTC 2025 - Last Modified: Fri Jan 24 20:17:08 UTC 2025 - 2K bytes - Viewed (0)