- Sort Score
- Result 10 results
- Languages All
Results 21 - 30 of 590 for Worker (0.05 sec)
-
docs/fr/docs/deployment/manually.md
```console $ pip install "hypercorn[trio]" ---> 100% ``` </div> ### Exécuter avec Trio Ensuite, vous pouvez passer l'option de ligne de commande `--worker-class` avec la valeur `trio` : <div class="termy"> ```console $ hypercorn main:app --worker-class trio ``` </div> Et cela démarrera Hypercorn avec votre application en utilisant Trio comme backend.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 5.3K bytes - Viewed (0) -
docs/zh/docs/deployment/docker.md
下面一些什么时候这种做法有意义的示例: #### 一个简单的应用程序 如果你的应用程序**足够简单**,你不需要(至少现在不需要)过多地微调进程数量,并且你可以使用自动默认值,那么你可能需要容器中的进程管理器 (使用官方 Docker 镜像),并且你在**单个服务器**而不是集群上运行它。 #### Docker Compose 你可以使用 **Docker Compose** 部署到**单个服务器**(而不是集群),因此你没有一种简单的方法来管理容器的复制(使用 Docker Compose),同时保留共享网络和 **负载均衡**。
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Mon Aug 12 21:47:53 UTC 2024 - 31.2K bytes - Viewed (0) -
tensorflow/c/eager/c_api_experimental_test.cc
// Replace worker1 using a new worker, and update the contexts. // Read the variable using `ctx_1`. This read should succeed. // // 1. Create a variable on `remote_device`, using `ctx_0`. TFE_TensorHandle* handle_0 = CreateVariable(ctx_0, 1.2, remote_device, /*variable_name=*/"var"); // 2. Wait for `var` to be created and initialized on the worker. TF_Status* status = TF_NewStatus();
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Aug 03 03:14:26 UTC 2023 - 31.5K bytes - Viewed (0) -
docs/en/docs/deployment/concepts.md
/// tip Don't worry if some of these items about **containers**, Docker, or Kubernetes don't make a lot of sense yet. I'll tell you more about container images, Docker, Kubernetes, etc. in a future chapter: [FastAPI in Containers - Docker](docker.md){.internal-link target=_blank}. /// ## Previous Steps Before Starting
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Wed Sep 18 16:09:57 UTC 2024 - 17.8K bytes - Viewed (0) -
docs/en/docs/deployment/docker.md
/// note | Technical Details The Docker image was created when Uvicorn didn't support managing and restarting dead workers, so it was needed to use Gunicorn with Uvicorn, which added quite some complexity, just to have Gunicorn manage and restart the Uvicorn worker processes.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Wed Sep 18 16:09:57 UTC 2024 - 28.5K bytes - Viewed (0) -
tensorflow/c/c_api_experimental_test.cc
namespace { TEST(CAPI_EXPERIMENTAL, GetServerDefTest) { const string expected_text_proto(R"(cluster { job { name: "worker" tasks { key: 0 value: "tpuserver:0" } tasks { key: 1 value: "localhost:1" } } } job_name: "worker" task_index: 1 protocol: "grpc" )"); TF_Status* status = TF_NewStatus();
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Jan 17 22:27:52 UTC 2023 - 13.1K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib.cc
}; tensorflow::mutex execution_mutex_; ExecutionState execution_state_ TF_GUARDED_BY(execution_mutex_) = ExecutionState::kIdle; // Tells the worker thread that there is new work. tensorflow::condition_variable start_execute_; // The worker thread notifies that work has finished. tensorflow::condition_variable finished_execute_; // Notifies a StartExecute that the previous Join has finished.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 25.9K bytes - Viewed (0) -
docs/de/docs/deployment/manually.md
```console $ pip install "hypercorn[trio]" ---> 100% ``` </div> ### Mit Trio ausführen Dann können Sie die Befehlszeilenoption `--worker-class` mit dem Wert `trio` übergeben: <div class="termy"> ```console $ hypercorn main:app --worker-class trio ``` </div> Und das startet Hypercorn mit Ihrer Anwendung und verwendet Trio als Backend.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 5.3K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_remote_test.cc
TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context( TFE_NewContext(opts.get(), status.get()), TFE_DeleteContext); tensorflow::ServerDef server_def = GetServerDef("worker", 3); // This server def has the task index set to 0. std::string serialized = server_def.SerializeAsString(); server_def.set_task_index(1); std::unique_ptr<tensorflow::GrpcServer> worker_server1;
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Jul 10 07:18:05 UTC 2024 - 6.8K bytes - Viewed (0) -
docs/zh/docs/deployment/concepts.md
### 复制工具和策略示例 可以通过多种方法来实现这一目标,我将在接下来的章节中向您详细介绍具体策略,例如在谈论 Docker 和容器时。 要考虑的主要限制是必须有一个**单个**组件来处理**公共IP**中的**端口**。 然后它必须有一种方法将通信**传输**到复制的**进程/worker**。 以下是一些可能的组合和策略: * **Gunicorn** 管理 **Uvicorn workers** * Gunicorn 将是监听 **IP** 和 **端口** 的 **进程管理器**,复制将通过 **多个 Uvicorn 工作进程** 进行 * **Uvicorn** 管理 **Uvicorn workers** * 一个 Uvicorn **进程管理器** 将监听 **IP** 和 **端口**,并且它将启动 **多个 Uvicorn 工作进程**
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 16.2K bytes - Viewed (0)