- Sort Score
- Result 10 results
- Languages All
Results 21 - 30 of 149 for CPU (0.01 sec)
-
docs/compression/README.md
streaming compression due to its stability and performance. This algorithm is specifically optimized for machine generated content. Write throughput is typically at least 500MB/s per CPU core, and scales with the number of available CPU cores. Decompression speed is typically at least 1GB/s. This means that in cases where raw IO is below these numbers compression will not only reduce disk usage but also help increase system throughput.
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Tue Aug 12 18:20:36 UTC 2025 - 5.2K bytes - Viewed (0) -
docs/de/docs/deployment/docker.md
Die **Anzahl der Prozesse** auf diesem Image wird **automatisch** anhand der verfügbaren CPU-**Kerne** berechnet. Das bedeutet, dass versucht wird, so viel **Leistung** wie möglich aus der CPU herauszuquetschen. Sie können das auch in der Konfiguration anpassen, indem Sie **Umgebungsvariablen**, usw. verwenden.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sat Nov 09 16:39:20 UTC 2024 - 38.9K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/timer/SystemMonitorTarget.java
append(buf, "open", () -> processProbe.getOpenFileDescriptorCount()).append(','); append(buf, "max", () -> processProbe.getMaxFileDescriptorCount()); buf.append("},"); buf.append("\"cpu\":{"); append(buf, "percent", () -> processProbe.getProcessCpuPercent()).append(','); append(buf, "total", () -> processProbe.getProcessCpuTotalTime()); buf.append("},");
Registered: Thu Sep 04 12:52:25 UTC 2025 - Last Modified: Thu Jul 17 08:28:31 UTC 2025 - 7.8K bytes - Viewed (0) -
ci/official/envs/linux_x86
TFCI_DOCKER_IMAGE=us-docker.pkg.dev/ml-oss-artifacts-published/ml-public-container/ml-build:latest TFCI_DOCKER_PULL_ENABLE=1 TFCI_DOCKER_REBUILD_ARGS="--target=devel ci/official/containers/ml_build" TFCI_INDEX_HTML_ENABLE=1 TFCI_LIB_SUFFIX="-cpu-linux-x86_64" TFCI_OUTPUT_DIR=build_output TFCI_WHL_AUDIT_ENABLE=1 TFCI_WHL_AUDIT_PLAT=manylinux_2_27_x86_64 TFCI_WHL_BAZEL_TEST_ENABLE=1 TFCI_WHL_SIZE_LIMIT=260M
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Jul 16 22:21:17 UTC 2025 - 1.4K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/collect/MinMaxPriorityQueueBenchmark.java
} }; public abstract Queue<Integer> create(Comparator<Integer> comparator); } /** * Does a CPU intensive operation on Integer and returns a BigInteger Used to implement an * ordering that spends a lot of cpu. */ static class ExpensiveComputation implements Function<Integer, BigInteger> { @Override public BigInteger apply(Integer from) {
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Sun Dec 22 03:38:46 UTC 2024 - 4.4K bytes - Viewed (0) -
ci/official/envs/macos_arm64
TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=macos_arm64 TFCI_BUILD_PIP_PACKAGE_WHEEL_NAME_ARG="--repo_env=WHEEL_NAME=tensorflow" TFCI_INDEX_HTML_ENABLE=1 TFCI_LIB_SUFFIX="-cpu-darwin-arm64" TFCI_MACOS_BAZEL_TEST_DIR_ENABLE=1 TFCI_MACOS_BAZEL_TEST_DIR_PATH="/Volumes/BuildData/bazel_output" TFCI_OUTPUT_DIR=build_output TFCI_WHL_BAZEL_TEST_ENABLE=1 TFCI_WHL_SIZE_LIMIT=245M
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Tue Apr 22 23:28:49 UTC 2025 - 1.4K bytes - Viewed (0) -
docs/ja/docs/deployment/concepts.md
## リソースの利用 あなたのサーバーは**リソース**であり、プログラムを実行しCPUの計算時間や利用可能なRAMメモリを消費または**利用**することができます。 システムリソースをどれくらい消費/利用したいですか? 「少ない方が良い」と考えるのは簡単かもしれないですが、実際には、**クラッシュせずに可能な限り**最大限に活用したいでしょう。 3台のサーバーにお金を払っているにも関わらず、そのRAMとCPUを少ししか使っていないとしたら、おそらく**お金を無駄にしている** 💸、おそらく**サーバーの電力を無駄にしている** 🌎ことになるでしょう。 その場合は、サーバーを2台だけにして、そのリソース(CPU、メモリ、ディスク、ネットワーク帯域幅など)をより高い割合で使用する方がよいでしょう。
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 24.1K bytes - Viewed (0) -
.github/workflows/arm-ci-extended.yml
CI_DOCKER_BUILD_EXTRA_PARAMS="--build-arg py_major_minor_version=${{ matrix.pyver }} --build-arg is_nightly=${is_nightly} --build-arg tf_project_name=${tf_project_name}" \
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Sep 01 15:40:11 UTC 2025 - 2.6K bytes - Viewed (0) -
docs/kms/IAM.md
- Reduced server startup time. For IAM encryption with the root credentials, MinIO had to use a memory-hard function (Argon2) that (on purpose) consumes a lot of memory and CPU. The new KMS-based approach can use a key derivation function that is orders of magnitudes cheaper w.r.t. memory and CPU. - Root credentials can now be changed easily. Before, a two-step process was required to
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Thu Jan 18 07:03:17 UTC 2024 - 5.3K bytes - Viewed (0) -
docs/pt/docs/deployment/docker.md
O **número de processos** nesta imagem é **calculado automaticamente** a partir dos **núcleos de CPU** disponíveis. Isso significa que ele tentará **aproveitar** o máximo de **desempenho** da CPU possível. Você também pode ajustá-lo com as configurações usando **variáveis de ambiente**, etc. Mas isso também significa que, como o número de processos depende da CPU do contêiner em execução, a **quantidade de memória consumida** também dependerá disso.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sat Nov 09 16:39:20 UTC 2024 - 37.4K bytes - Viewed (0)