Search Options

Results per page
Sort
Preferred Languages
Advance

Results 191 - 200 of 759 for flot (0.02 sec)

  1. docs_src/schema_extra_example/tutorial005_an_py310.py

    from typing import Annotated
    
    from fastapi import Body, FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: str | None = None
        price: float
        tax: float | None = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(
        *,
        item_id: int,
        item: Annotated[
            Item,
            Body(
                openapi_examples={
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Aug 26 18:03:13 UTC 2023
    - 1.5K bytes
    - Viewed (0)
  2. docs_src/schema_extra_example/tutorial005_py39.py

    from typing import Union
    
    from fastapi import Body, FastAPI
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
    
    
    @app.put("/items/{item_id}")
    async def update_item(
        *,
        item_id: int,
        item: Item = Body(
            openapi_examples={
                "normal": {
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Dec 17 20:41:43 UTC 2025
    - 1.4K bytes
    - Viewed (0)
  3. docs/pt/docs/tutorial/extra-data-types.md

    # Tipos de dados extras { #extra-data-types }
    
    Até agora, você tem usado tipos de dados comuns, tais como:
    
    * `int`
    * `float`
    * `str`
    * `bool`
    
    Mas você também pode usar tipos de dados mais complexos.
    
    E você ainda terá os mesmos recursos que viu até agora:
    
    * Ótimo suporte do editor.
    * Conversão de dados das requisições recebidas.
    * Conversão de dados para os dados da resposta.
    * Validação de dados.
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Nov 12 16:23:57 UTC 2025
    - 3K bytes
    - Viewed (0)
  4. fess-crawler/src/main/java/org/codelibs/fess/crawler/entity/UrlQueueImpl.java

         */
        @Override
        public void setLastModified(final Long lastModified) {
            this.lastModified = lastModified;
        }
    
        @Override
        public float getWeight() {
            return weight;
        }
    
        @Override
        public void setWeight(float weight) {
            this.weight = weight;
        }
    
        /**
         * Returns a string representation of this object.
         * @return A string representation.
    Registered: Sat Dec 20 11:21:39 UTC 2025
    - Last Modified: Sun Jul 06 02:13:03 UTC 2025
    - 6.1K bytes
    - Viewed (0)
  5. docs_src/body/tutorial003_py310.py

    from fastapi import FastAPI
    from pydantic import BaseModel
    
    
    class Item(BaseModel):
        name: str
        description: str | None = None
        price: float
        tax: float | None = None
    
    
    app = FastAPI()
    
    
    @app.put("/items/{item_id}")
    async def update_item(item_id: int, item: Item):
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 20 15:55:38 UTC 2025
    - 330 bytes
    - Viewed (0)
  6. docs/zh/docs/tutorial/extra-data-types.md

    # 额外数据类型
    
    到目前为止,您一直在使用常见的数据类型,如:
    
    * `int`
    * `float`
    * `str`
    * `bool`
    
    但是您也可以使用更复杂的数据类型。
    
    您仍然会拥有现在已经看到的相同的特性:
    
    * 很棒的编辑器支持。
    * 传入请求的数据转换。
    * 响应数据转换。
    * 数据验证。
    * 自动补全和文档。
    
    ## 其他数据类型
    
    下面是一些你可以使用的其他数据类型:
    
    * `UUID`:
        * 一种标准的 "通用唯一标识符" ,在许多数据库和系统中用作ID。
        * 在请求和响应中将以 `str` 表示。
    * `datetime.datetime`:
        * 一个 Python `datetime.datetime`.
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Mon Nov 18 02:25:44 UTC 2024
    - 2.5K bytes
    - Viewed (0)
  7. docs_src/path_operation_configuration/tutorial001_py310.py

    from fastapi import FastAPI, status
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: str | None = None
        price: float
        tax: float | None = None
        tags: set[str] = set()
    
    
    @app.post("/items/", response_model=Item, status_code=status.HTTP_201_CREATED)
    async def create_item(item: Item):
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Fri Jan 07 14:11:31 UTC 2022
    - 363 bytes
    - Viewed (0)
  8. guava/src/com/google/common/base/Defaults.java

     *
     * @author Ben Yu
     * @since 1.0
     */
    @J2ktIncompatible
    @GwtIncompatible
    public final class Defaults {
      private Defaults() {}
    
      private static final Double DOUBLE_DEFAULT = 0d;
      private static final Float FLOAT_DEFAULT = 0f;
    
      /**
       * Returns the default value of {@code type} as defined by JLS --- {@code 0} for numbers, {@code
       * false} for {@code boolean} and {@code '\0'} for {@code char}. For non-primitive types and
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Sun Dec 22 03:38:46 UTC 2024
    - 2.2K bytes
    - Viewed (0)
  9. docs_src/path_operation_configuration/tutorial001_py39.py

    from typing import Union
    
    from fastapi import FastAPI, status
    from pydantic import BaseModel
    
    app = FastAPI()
    
    
    class Item(BaseModel):
        name: str
        description: Union[str, None] = None
        price: float
        tax: Union[float, None] = None
        tags: set[str] = set()
    
    
    @app.post("/items/", response_model=Item, status_code=status.HTTP_201_CREATED)
    async def create_item(item: Item):
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat May 14 11:59:59 UTC 2022
    - 401 bytes
    - Viewed (0)
  10. fastapi/encoders.py

    # TODO: pv2 should this return strings instead?
    def decimal_encoder(dec_value: Decimal) -> Union[int, float]:
        """
        Encodes a Decimal as int if there's no exponent, otherwise float
    
        This is useful when we use ConstrainedDecimal to represent Numeric(x,0)
        where an integer (but not int typed) is used. Encoding this as a float
        results in failed round-tripping between encode and parse.
        Our Id type is a prime example of this.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 27 12:54:56 UTC 2025
    - 10.7K bytes
    - Viewed (0)
Back to top