Search Options

Results per page
Sort
Preferred Languages
Advance

Results 11 - 20 of 372 for machine (0.05 sec)

  1. ci/official/containers/ml_build_arm64/builder.devtoolset/gcc9-fixups.patch

    +  __attribute__ ((__alloc_size__ params))
    +
     #include <iostream>
     
     using namespace std;
    diff --git a/sysdeps/aarch64/dl-machine.h b/sysdeps/aarch64/dl-machine.h
    index 185402f..bbdeae0 100644
    --- a/sysdeps/aarch64/dl-machine.h
    +++ b/sysdeps/aarch64/dl-machine.h
    @@ -49,23 +49,11 @@ elf_machine_load_address (void)
       /* To figure out the load address we use the definition that for any symbol:
    Registered: Tue Sep 09 12:39:10 UTC 2025
    - Last Modified: Mon Nov 11 19:25:56 UTC 2024
    - 8.9K bytes
    - Viewed (0)
  2. SECURITY.md

    ## TensorFlow models are programs
    
    TensorFlow
    [**models**](https://developers.google.com/machine-learning/glossary/#model) (to
    use a term commonly used by machine learning practitioners) are expressed as
    programs that TensorFlow executes. TensorFlow programs are encoded as
    computation
    [**graphs**](https://developers.google.com/machine-learning/glossary/#graph).
    Since models are practically programs that TensorFlow executes, using untrusted
    Registered: Tue Sep 09 12:39:10 UTC 2025
    - Last Modified: Wed Oct 16 16:10:43 UTC 2024
    - 9.6K bytes
    - Viewed (0)
  3. docs/pt/docs/async.md

    * **Machine Learning**: Normalmente exige muita multiplicação de matrizes e vetores. Pense numa grande planilha com números e em multiplicar todos eles juntos e ao mesmo tempo.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 23.6K bytes
    - Viewed (0)
  4. docs/es/docs/advanced/events.md

    ## Caso de Uso
    
    Empecemos con un ejemplo de **caso de uso** y luego veamos cómo resolverlo con esto.
    
    Imaginemos que tienes algunos **modelos de machine learning** que quieres usar para manejar requests. 🤖
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Mon Dec 30 18:26:57 UTC 2024
    - 8.2K bytes
    - Viewed (0)
  5. cmd/net.go

    		}
    	}
    
    	return host, port, nil
    }
    
    // isLocalHost - checks if the given parameter
    // correspond to one of the local IP of the
    // current machine
    func isLocalHost(host string, port string, localPort string) (bool, error) {
    	hostIPs, err := getHostIP(host)
    	if err != nil {
    		return false, err
    	}
    
    	nonInterIPV4s := mustGetLocalIP4().Intersection(hostIPs)
    Registered: Sun Sep 07 19:28:11 UTC 2025
    - Last Modified: Wed Jun 19 14:34:00 UTC 2024
    - 9.6K bytes
    - Viewed (1)
  6. docs/en/docs/async.md

    ### Concurrency + Parallelism: Web + Machine Learning { #concurrency-parallelism-web-machine-learning }
    
    With **FastAPI** you can take advantage of concurrency that is very common for web development (the same main attraction of NodeJS).
    
    But you can also exploit the benefits of parallelism and multiprocessing (having multiple processes running in parallel) for **CPU bound** workloads like those in Machine Learning systems.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:56:21 UTC 2025
    - 24K bytes
    - Viewed (0)
  7. docs/en/docs/deployment/index.md

    ## What Does Deployment Mean { #what-does-deployment-mean }
    
    To **deploy** an application means to perform the necessary steps to make it **available to the users**.
    
    For a **web API**, it normally involves putting it in a **remote machine**, with a **server program** that provides good performance, stability, etc, so that your **users** can **access** the application efficiently and without interruptions or problems.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 1.3K bytes
    - Viewed (0)
  8. docs/en/docs/deployment/concepts.md

    ### Server Memory { #server-memory }
    
    For example, if your code loads a Machine Learning model with **1 GB in size**, when you run one process with your API, it will consume at least 1 GB of RAM. And if you start **4 processes** (4 workers), each will consume 1 GB of RAM. So in total, your API will consume **4 GB of RAM**.
    
    And if your remote server or virtual machine only has 3 GB of RAM, trying to load more than 4 GB of RAM will cause problems. 🚨
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 18.6K bytes
    - Viewed (0)
  9. src/test/java/jcifs/config/BaseConfigurationTest.java

            assertNotNull(defaultConfig.getRandom(), "Random should not be null");
            assertNotNull(defaultConfig.getLocalTimezone(), "Local timezone should not be null");
            assertNotNull(defaultConfig.getMachineId(), "Machine ID should not be null");
        }
    
        @Test
        @DisplayName("Test network configuration getters")
        void testNetworkConfigurationGetters() {
            assertEquals(0, config.getLocalPort());
    Registered: Sun Sep 07 00:10:21 UTC 2025
    - Last Modified: Sat Aug 30 05:58:03 UTC 2025
    - 20.6K bytes
    - Viewed (0)
  10. docs/fr/docs/deployment/index.md

    ## Que signifie le déploiement
    
    **Déployer** une application signifie effectuer les étapes nécessaires pour la rendre **disponible pour les
    utilisateurs**.
    
    Pour une **API Web**, cela implique normalement de la placer sur une **machine distante**, avec un **programme serveur**
    qui offre de bonnes performances, une bonne stabilité, _etc._, afin que vos **utilisateurs** puissent **accéder** à
    l'application efficacement et sans interruption ni problème.
    
    Registered: Sun Sep 07 07:19:17 UTC 2025
    - Last Modified: Sat Jun 24 14:47:15 UTC 2023
    - 1.5K bytes
    - Viewed (0)
Back to top