- Sort Score
- Result 10 results
- Languages All
Results 11 - 20 of 170 for cpu (0.01 sec)
-
docs/zh/docs/deployment/concepts.md
## 资源利用率 您的服务器是一个**资源**,您可以通过您的程序消耗或**利用**CPU 上的计算时间以及可用的 RAM 内存。 您想要消耗/利用多少系统资源? 您可能很容易认为“不多”,但实际上,您可能希望在不崩溃的情况下**尽可能多地消耗**。 如果您支付了 3 台服务器的费用,但只使用了它们的一点点 RAM 和 CPU,那么您可能**浪费金钱** 💸,并且可能 **浪费服务器电力** 🌎,等等。 在这种情况下,最好只拥有 2 台服务器并使用更高比例的资源(CPU、内存、磁盘、网络带宽等)。 另一方面,如果您有 2 台服务器,并且正在使用 **100% 的 CPU 和 RAM**,则在某些时候,一个进程会要求更多内存,并且服务器将不得不使用磁盘作为“内存” (这可能会慢数千倍),甚至**崩溃**。 或者一个进程可能需要执行一些计算,并且必须等到 CPU 再次空闲。
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 16.2K bytes - Viewed (0) -
common-protos/k8s.io/api/autoscaling/v2beta2/generated.proto
// ContainerResourceMetricSource indicates how to scale on a resource metric known to // Kubernetes, as specified in requests and limits, describing each pod in the // current scale target (e.g. CPU or memory). The values will be averaged // together before being compared to the target. Such metrics are built in to // Kubernetes, and have special scaling options on top of those available to
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Mon Mar 11 18:43:24 UTC 2024 - 21K bytes - Viewed (0) -
common-protos/k8s.io/api/autoscaling/v1/generated.proto
optional int32 desiredReplicas = 4; // currentCPUUtilizationPercentage is the current average CPU utilization over all pods, represented as a percentage of requested CPU, // e.g. 70 means that an average pod is using now 70% of its requested CPU. // +optional optional int32 currentCPUUtilizationPercentage = 5; } // MetricSpec specifies how to scale based on a single metric
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Mon Mar 11 18:43:24 UTC 2024 - 22K bytes - Viewed (0) -
manifests/addons/dashboards/ztunnel.libsonnet
panels.timeSeries.bytes('Memory Usage', queries.memUsage, 'Memory usage of each running instance'), panels.timeSeries.base('CPU Usage', queries.cpuUsage, 'CPU usage of each running instance'), ]), row.new('Network') + row.withPanels([ panels.timeSeries.connections('Connections', queries.connections, 'Connections opened and closed per instance'),
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Fri Jul 26 23:54:32 UTC 2024 - 1.9K bytes - Viewed (0) -
manifests/addons/dashboards/pilot.libsonnet
panels.timeSeries.allocations('Memory Allocations', queries.goAllocations, 'Details about memory allocations'), panels.timeSeries.base('CPU Usage', queries.cpuUsage, 'CPU usage of each running instance'), panels.timeSeries.base('Goroutines', queries.goroutines, 'Goroutine count for each running instance'), ]), ], panelHeight=10, startY=1) + g.util.grid.makeGrid([
Registered: Wed Nov 06 22:53:10 UTC 2024 - Last Modified: Wed Jun 12 20:46:28 UTC 2024 - 2.9K bytes - Viewed (0) -
docs/tuning/tuned.conf
[main] summary=Maximum server performance for MinIO [vm] transparent_hugepage=madvise [sysfs] /sys/kernel/mm/transparent_hugepage/defrag=defer+madvise /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none=0 [cpu] force_latency=1 governor=performance energy_perf_bias=performance min_perf_pct=100 [sysctl] fs.xfs.xfssyncd_centisecs=72000 net.core.busy_read=50 net.core.busy_poll=50 kernel.numa_balancing=1
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Fri Jul 12 23:31:18 UTC 2024 - 1.9K bytes - Viewed (0) -
ci/official/envs/linux_arm64
TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --config release_arm64_linux" TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_arm64 # Note: this is not set to "--cpu", because that changes the package name # to tensorflow_cpu. These ARM builds are supposed to have the name "tensorflow" # despite lacking Nvidia CUDA support. TFCI_BUILD_PIP_PACKAGE_ARGS="--repo_env=WHEEL_NAME=tensorflow"
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 14 23:45:36 UTC 2024 - 1.5K bytes - Viewed (0) -
docs/pt/docs/deployment/concepts.md
Nesse caso, seria melhor ter apenas 2 servidores e usar uma porcentagem maior de seus recursos (CPU, memória, disco, largura de banda de rede, etc).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Fri Oct 04 11:04:50 UTC 2024 - 19.7K bytes - Viewed (0) -
docs/de/docs/deployment/concepts.md
In diesem Fall könnte es besser sein, nur zwei Server zu haben und einen höheren Prozentsatz von deren Ressourcen zu nutzen (CPU, Arbeitsspeicher, Festplatte, Netzwerkbandbreite, usw.).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 20.6K bytes - Viewed (0) -
ci/official/utilities/rename_and_verify_wheels.sh
if [[ "$TFCI_WHL_NUMPY_VERSION" == 1 ]]; then # Uninstall tf nightly wheel built with numpy1. "$python" -m pip uninstall -y tf_nightly_numpy1 # Install tf nightly cpu wheel built with numpy2.x from PyPI in numpy1.x env. "$python" -m pip install tf-nightly-cpu if [[ "$TFCI_WHL_IMPORT_TEST_ENABLE" == "1" ]]; then "$python" -c 'import tensorflow as tf; t1=tf.constant([1,2,3,4]); t2=tf.constant([5,6,7,8]); print(tf.add(t1,t2).shape)'
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Oct 02 21:18:17 UTC 2024 - 4.3K bytes - Viewed (0)