Search Options

Results per page
Sort
Preferred Languages
Advance

Results 11 - 20 of 163 for CPU (0.66 sec)

  1. cmd/update.go

    			cpuMap[cpus[i].PhysicalID] = struct{}{}
    			coreMap[cpus[i].CoreID] = struct{}{}
    		}
    		cpu := cpus[0]
    		uaAppend(" CPU ", fmt.Sprintf("(total_cpus:%d, total_cores:%d; vendor:%s; family:%s; model:%s; stepping:%d; model_name:%s)",
    			len(cpuMap), len(coreMap), cpu.VendorID, cpu.Family, cpu.Model, cpu.Stepping, cpu.ModelName))
    	}
    	uaAppend(")", "")
    
    	return strings.Join(userAgentParts, "")
    }
    
    Registered: Sun Dec 28 19:28:13 UTC 2025
    - Last Modified: Sun Sep 28 20:59:21 UTC 2025
    - 18.9K bytes
    - Viewed (0)
  2. docs/tuning/tuned.conf

    [main]
    summary=Maximum server performance for MinIO
    
    [vm]
    transparent_hugepage=madvise
    
    [sysfs]
    /sys/kernel/mm/transparent_hugepage/defrag=defer+madvise
    /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none=0
    
    [cpu]
    force_latency=1
    governor=performance
    energy_perf_bias=performance
    min_perf_pct=100
    
    [sysctl]
    fs.xfs.xfssyncd_centisecs=72000
    net.core.busy_read=50
    net.core.busy_poll=50
    kernel.numa_balancing=1
    
    Registered: Sun Dec 28 19:28:13 UTC 2025
    - Last Modified: Fri Jul 12 23:31:18 UTC 2024
    - 1.9K bytes
    - Viewed (0)
  3. docs/pt/docs/deployment/concepts.md

    Nesse caso, seria melhor ter apenas 2 servidores e usar uma porcentagem maior de seus recursos (CPU, memória, disco, largura de banda de rede, etc).
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Wed Nov 12 16:23:57 UTC 2025
    - 20.5K bytes
    - Viewed (0)
  4. docs/zh/docs/deployment/concepts.md

    ## 资源利用率
    
    您的服务器是一个**资源**,您可以通过您的程序消耗或**利用**CPU 上的计算时间以及可用的 RAM 内存。
    
    您想要消耗/利用多少系统资源? 您可能很容易认为“不多”,但实际上,您可能希望在不崩溃的情况下**尽可能多地消耗**。
    
    如果您支付了 3 台服务器的费用,但只使用了它们的一点点 RAM 和 CPU,那么您可能**浪费金钱** 💸,并且可能 **浪费服务器电力** 🌎,等等。
    
    在这种情况下,最好只拥有 2 台服务器并使用更高比例的资源(CPU、内存、磁盘、网络带宽等)。
    
    另一方面,如果您有 2 台服务器,并且正在使用 **100% 的 CPU 和 RAM**,则在某些时候,一个进程会要求更多内存,并且服务器将不得不使用磁盘作为“内存” (这可能会慢数千倍),甚至**崩溃**。 或者一个进程可能需要执行一些计算,并且必须等到 CPU 再次空闲。
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun May 11 13:37:26 UTC 2025
    - 16.2K bytes
    - Viewed (0)
  5. ci/official/envs/linux_arm64

    TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --repo_env=USE_PYWRAP_RULES=True --config release_arm64_linux"
    TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_arm64
    # Note: this is not set to "--cpu", because that changes the package name
    # to tensorflow_cpu. These ARM builds are supposed to have the name "tensorflow"
    # despite lacking Nvidia CUDA support.
    TFCI_BUILD_PIP_PACKAGE_WHEEL_NAME_ARG="--repo_env=WHEEL_NAME=tensorflow"
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Sat Dec 13 00:14:04 UTC 2025
    - 1.6K bytes
    - Viewed (0)
  6. docs/es/docs/deployment/concepts.md

    En ese caso, podría ser mejor tener solo 2 servidores y usar un mayor porcentaje de sus recursos (CPU, memoria, disco, ancho de banda de red, etc.).
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Tue Dec 16 16:33:45 UTC 2025
    - 20.1K bytes
    - Viewed (0)
  7. src/main/java/org/codelibs/fess/helper/SystemHelper.java

            }
        }
    
        /**
         * Calibrates the CPU load.
         *
         * @return true if the CPU load is within the acceptable range, false otherwise.
         */
        public boolean calibrateCpuLoad() {
            return calibrateCpuLoad(0L);
        }
    
        /**
         * Calibrates the CPU load with a timeout.
         *
         * @param timeoutInMillis The timeout in milliseconds.
    Registered: Sat Dec 20 09:19:18 UTC 2025
    - Last Modified: Sat Dec 20 08:30:43 UTC 2025
    - 36.6K bytes
    - Viewed (0)
  8. docs/de/docs/deployment/concepts.md

    In diesem Fall könnte es besser sein, nur zwei Server zu haben und einen höheren Prozentsatz von deren Ressourcen zu nutzen (CPU, Arbeitsspeicher, Festplatte, Netzwerkbandbreite, usw.).
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Tue Dec 02 17:32:56 UTC 2025
    - 21.5K bytes
    - Viewed (0)
  9. docs/en/docs/deployment/concepts.md

    In that case, it could be better to have only 2 servers and use a higher percentage of their resources (CPU, memory, disk, network bandwidth, etc).
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 18.6K bytes
    - Viewed (1)
  10. ci/official/utilities/rename_and_verify_wheels.sh

    if [[ "$TFCI_WHL_NUMPY_VERSION" == 1 ]]; then
      # Uninstall tf nightly wheel built with numpy1.
      "$python" -m pip uninstall -y tf_nightly_numpy1
      # Install tf nightly cpu wheel built with numpy2.x from PyPI in numpy1.x env.
      "$python" -m pip install tf-nightly-cpu
      if [[ "$TFCI_WHL_IMPORT_TEST_ENABLE" == "1" ]]; then
        "$python" -c 'import tensorflow as tf; t1=tf.constant([1,2,3,4]); t2=tf.constant([5,6,7,8]); print(tf.add(t1,t2).shape)'
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Mon Sep 22 21:39:32 UTC 2025
    - 4.4K bytes
    - Viewed (0)
Back to top