Search Options

Results per page
Sort
Preferred Languages
Advance

Results 181 - 190 of 225 for MULTIPLY (0.24 sec)

  1. tensorflow/c/eager/parallel_device/parallel_device_test.cc

          context.get(), components, second_device_name, status.get());
      ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get());
    
      TensorHandlePtr multiply_result(
          Multiply(context.get(), second_combined_value.get(),
                   second_negative_one.get(), status.get()));
      ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get());
    
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Thu Jul 08 23:47:35 UTC 2021
    - 29.3K bytes
    - Viewed (0)
  2. src/math/big/nat.go

    	//
    	//   x = xh*b + x0  (0 <= x0 < b)
    	//   y = yh*b + y0  (0 <= y0 < b)
    	//   b = 1<<(_W*k)  ("base" of digits xi, yi)
    	//
    	k := karatsubaLen(n, karatsubaThreshold)
    	// k <= n
    
    	// multiply x0 and y0 via Karatsuba
    	x0 := x[0:k]              // x0 is not normalized
    	y0 := y[0:k]              // y0 is not normalized
    	z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Mon May 13 21:31:58 UTC 2024
    - 31.7K bytes
    - Viewed (0)
  3. src/math/bits/bits.go

    func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
    	diff = x - y - borrow
    	// See Sub32 for the bit logic.
    	borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
    	return
    }
    
    // --- Full-width multiply ---
    
    // Mul returns the full-width product of x and y: (hi, lo) = x * y
    // with the product bits' upper half returned in hi and the lower
    // half returned in lo.
    //
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Thu Oct 19 11:59:09 UTC 2023
    - 17.9K bytes
    - Viewed (0)
  4. src/cmd/compile/internal/ssa/_gen/AMD64Ops.go

    		// Let x = arg0*arg1 (full 32x32->64  unsigned multiply). Returns uint32(x), and flags set to overflow if uint32(x) != x.
    		{name: "MULLU", argLength: 2, reg: regInfo{inputs: []regMask{ax, gpsp}, outputs: []regMask{ax, 0}, clobbers: dx}, typ: "(UInt32,Flags)", asm: "MULL", commutative: true, clobberFlags: true},
    		// Let x = arg0*arg1 (full 64x64->128 unsigned multiply). Returns uint64(x), and flags set to overflow if uint64(x) != x.
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Fri Aug 04 16:40:24 UTC 2023
    - 98K bytes
    - Viewed (1)
  5. src/testing/benchmark.go

    			}
    			// Order of operations matters.
    			// For very fast benchmarks, prevIters ~= prevns.
    			// If you divide first, you get 0 or 1,
    			// which can hide an order of magnitude in execution time.
    			// So multiply first, then divide.
    			n = goalns * prevIters / prevns
    			// Run more iterations than we think we'll need (1.2x).
    			n += n / 5
    			// Don't grow too fast in case we had timing errors previously.
    			n = min(n, 100*last)
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Thu May 23 01:00:11 UTC 2024
    - 23.9K bytes
    - Viewed (0)
  6. src/cmd/compile/internal/ssa/_gen/S390XOps.go

    		{name: "LoweredNilCheck", argLength: 2, reg: regInfo{inputs: []regMask{ptrsp}}, clobberFlags: true, nilCheck: true, faultOnNilArg0: true},
    		// Round ops to block fused-multiply-add extraction.
    		{name: "LoweredRound32F", argLength: 1, reg: fp11, resultInArg0: true, zeroWidth: true},
    		{name: "LoweredRound64F", argLength: 1, reg: fp11, resultInArg0: true, zeroWidth: true},
    
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Fri Feb 24 00:21:13 UTC 2023
    - 52.5K bytes
    - Viewed (0)
  7. src/cmd/compile/internal/ssa/_gen/RISCV64Ops.go

    		{name: "SLTIU", argLength: 1, reg: gp11, asm: "SLTIU", aux: "Int64"}, // arg0 < auxint, unsigned, result is 0 or 1
    
    		// Round ops to block fused-multiply-add extraction.
    		{name: "LoweredRound32F", argLength: 1, reg: fp11, resultInArg0: true},
    		{name: "LoweredRound64F", argLength: 1, reg: fp11, resultInArg0: true},
    
    		// Calls
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Thu Mar 07 14:57:07 UTC 2024
    - 30.7K bytes
    - Viewed (0)
  8. docs/en/docs/async.md

    * **Deep Learning**: this is a sub-field of Machine Learning, so, the same applies. It's just that there is not a single spreadsheet of numbers to multiply, but a huge set of them, and in many cases, you use a special processor to build and / or use those models.
    
    ### Concurrency + Parallelism: Web + Machine Learning
    
    Registered: Mon Jun 17 08:32:26 UTC 2024
    - Last Modified: Mon May 20 00:24:48 UTC 2024
    - 23K bytes
    - Viewed (0)
  9. src/cmd/asm/internal/asm/asm.go

    		p.firstProg = prog
    	} else {
    		p.lastProg.Link = prog
    	}
    	p.lastProg = prog
    	if doLabel {
    		p.pc++
    		for _, label := range p.pendingLabels {
    			if p.labels[label] != nil {
    				p.errorf("label %q multiply defined", label)
    				return
    			}
    			p.labels[label] = prog
    		}
    		p.pendingLabels = p.pendingLabels[0:0]
    	}
    	prog.Pc = p.pc
    	if *flags.Debug {
    		fmt.Println(p.lineNum, prog)
    	}
    	if testOut != nil {
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Wed May 22 02:04:54 UTC 2024
    - 25.5K bytes
    - Viewed (0)
  10. src/cmd/internal/obj/ppc64/asm9.go

    	/* Vector multiply */
    	{as: AVMULESB, a1: C_VREG, a2: C_VREG, a6: C_VREG, type_: 82, size: 4},              /* vector multiply, vx-form */
    	{as: AVPMSUM, a1: C_VREG, a2: C_VREG, a6: C_VREG, type_: 82, size: 4},               /* vector polynomial multiply & sum, vx-form */
    	{as: AVMSUMUDM, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG, type_: 83, size: 4}, /* vector multiply-sum, va-form */
    
    	/* Vector rotate */
    Registered: Wed Jun 12 16:32:35 UTC 2024
    - Last Modified: Wed May 15 13:55:28 UTC 2024
    - 156.1K bytes
    - Viewed (0)
Back to top