- Sort Score
- Result 10 results
- Languages All
Results 1 - 6 of 6 for gCD (0.12 sec)
-
guava/src/com/google/common/math/LongMath.java
int bTwos = Long.numberOfTrailingZeros(b); b >>= bTwos; // divide out all 2s while (a != b) { // both a, b are odd // The key to the binary GCD algorithm is as follows: // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. // We bend over backwards to avoid branching, adapting a technique from
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Fri Aug 29 16:20:07 UTC 2025 - 46.8K bytes - Viewed (0) -
android/guava-tests/test/com/google/common/math/IntMathTest.java
for (int b : POSITIVE_INTEGER_CANDIDATES) { assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(IntMath.gcd(a, b))); } } } public void testGCDZero() { for (int a : POSITIVE_INTEGER_CANDIDATES) { assertEquals(a, IntMath.gcd(a, 0)); assertEquals(a, IntMath.gcd(0, a)); } assertEquals(0, IntMath.gcd(0, 0)); } public void testGCDNegativePositiveThrows() {
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 24.1K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/ApacheBenchmark.java
return DoubleMath.factorial(n); } @Override public int gcdInt(int a, int b) { return IntMath.gcd(a, b); } @Override public long gcdLong(long a, long b) { return LongMath.gcd(a, b); } @Override public long binomialCoefficient(int n, int k) { return LongMath.binomial(n, k); } @Override
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Jul 14 14:44:08 UTC 2025 - 6.9K bytes - Viewed (0) -
guava-tests/test/com/google/common/math/LongMathTest.java
assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(LongMath.gcd(a, b))); } } } @GwtIncompatible // TODO public void testGCDZero() { for (long a : POSITIVE_LONG_CANDIDATES) { assertEquals(a, LongMath.gcd(a, 0)); assertEquals(a, LongMath.gcd(0, a)); } assertEquals(0, LongMath.gcd(0, 0)); } @GwtIncompatible // TODO
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Mon Aug 11 19:31:30 UTC 2025 - 31.4K bytes - Viewed (0) -
android/guava-tests/benchmark/com/google/common/math/LongMathBenchmark.java
int mod(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += LongMath.mod(longs[j], positive[j]); } return tmp; } @Benchmark int gCD(int reps) { int tmp = 0; for (int i = 0; i < reps; i++) { int j = i & ARRAY_MASK; tmp += LongMath.mod(nonnegative[j], positive[j]); } return tmp; } @Benchmark
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Dec 19 18:03:30 UTC 2024 - 3.5K bytes - Viewed (0) -
android/guava/src/com/google/common/primitives/Ints.java
// moved at that point. Otherwise, we can rotate the cycle a[1], a[1 + d], a[1 + 2d], etc, // then a[2] etc, and so on until we have rotated all elements. There are gcd(d, n) cycles // in all. // (3) "Successive". We can consider that we are exchanging a block of size d (a[0..d-1]) with a // block of size n-d (a[d..n-1]), where in general these blocks have different sizes. If we
Registered: Fri Sep 05 12:43:10 UTC 2025 - Last Modified: Thu Aug 07 16:05:33 UTC 2025 - 31.4K bytes - Viewed (0)