- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 245 for tearney (0.38 sec)
-
TODO/how-i-learned-to-love-parallelized-applies-with-python-pandas-dask-and-numba
> * 原文地址:[Data Pre-Processing in Python: How I learned to love parallelized applies with Dask and Numba](https://medium.com/@ernestk.social/how-i-learned-to-love-parallelized-applies-with-python-pandas-dask-and-numba-f06b0b367138) > * 原文作者:[Ernest Kim](https://medium.com/@ernestk.social?source=post_header_lockup) > * 译文出自:[掘金翻译计划](https://github.com/xitu/gold-miner)
Plain Text - Registered: 2023-02-02 14:49 - Last Modified: 2018-03-12 04:36 - 11.8K bytes - Viewed (0) -
examples/2_BasicModels/gradient_boosted_decision_tree.py
max_depth = 16 # Fill GBDT parameters into the config proto learner_config = gbdt_learner.LearnerConfig() learner_config.learning_rate_tuner.fixed.learning_rate = learning_rate learner_config.regularization.l1 = l1_regul learner_config.regularization.l2 = l2_regul / examples_per_layer learner_config.constraints.max_tree_depth = max_depth growing_mode = gbdt_learner.LearnerConfig.LAYER_BY_LAYER learner_config.growing_mode = growing_mode
Python - Registered: 2023-02-07 19:51 - Last Modified: 2018-07-27 02:50 - 2.9K bytes - Viewed (0) -
tensorflow_v1/examples/2_BasicModels/gradient_boosted_decision_tree.py
max_depth = 16 # Fill GBDT parameters into the config proto learner_config = gbdt_learner.LearnerConfig() learner_config.learning_rate_tuner.fixed.learning_rate = learning_rate learner_config.regularization.l1 = l1_regul learner_config.regularization.l2 = l2_regul / examples_per_layer learner_config.constraints.max_tree_depth = max_depth growing_mode = gbdt_learner.LearnerConfig.LAYER_BY_LAYER learner_config.growing_mode = growing_mode
Python - Registered: 2023-02-07 19:51 - Last Modified: 2020-05-16 20:14 - 2.9K bytes - Viewed (1) -
TODO/11-things-i-learned-reading-the-flexbox-spec.md
> * 原文地址:[11 things I learned reading the flexbox spec](https://hackernoon.com/11-things-i-learned-reading-the-flexbox-spec-5f0c799c776b) > * 原文作者:本文已获原作者 [David Gilbertson](https://hackernoon.com/@david.gilbertson) 授权 > * 译文出自:[掘金翻译计划](https://github.com/xitu/gold-miner) > * 译者:[XatMassacrE](https://github.com/XatMassacrE) > * 校对者:[zaraguo](https://github.com/zaraguo),[reid3290](https://github.com/reid3290) # 读完 flexbox 细则之后学到的 11 件事
Plain Text - Registered: 2023-02-02 14:49 - Last Modified: 2017-06-14 02:52 - 14K bytes - Viewed (0) -
Chapter15/representation_learning.tex
\citep{Fei-Fei+al-2006}是可能的。 在\gls{transfer_learning}阶段,仅需要一个\gls{labeled}样本来推断表示空间中聚集在相同点周围许多可能测试样本的\gls{label}。 这使得在\gls{learned}的表示空间中,对应于不变性的变化因子已经与其他因子完全分离,在区分某些类别的对象时,我们可以学习到哪些因素具有决定意义。 % 529 mid 考虑一个\gls{zero_shot_learning}\gls{setting}的例子,\gls{learner}已经读取了大量文本,然后要解决\gls{object_recognition}的问题。 如果文本足够好地描述了对象,那么即使没有看到某对象的图像,也能识别出该对象的类别。 例如,已知猫有四条腿和尖尖的耳朵,那么\gls{learner}可以在没有见过猫的情况下猜测该图像中是猫。 % 529 end 只有在训练时使用了额外信息,\gls{zero_data_learning}~\citep{Larochelle2008}和\gls{zero_shot_learning}~\ci...
Others - Registered: 2023-02-02 11:44 - Last Modified: 2017-09-24 14:24 - 74.2K bytes - Viewed (0) -
test/unzip-and-zip.js
JavaScript - Registered: 2023-02-03 12:22 - Last Modified: 2019-02-12 17:11 - 2.3K bytes - Viewed (0) -
test/wrap.js
it('should create a wrapped function', function() { var p = wrap(lodashStable.escape, function(func, text) { return '<p>' + func(text) + '</p>'; }); assert.strictEqual(p('fred, barney, & pebbles'), '<p>fred, barney, & pebbles</p>'); }); it('should provide correct `wrapper` arguments', function() { var args; var wrapped = wrap(noop, function() { args || (args = slice.call(arguments));
JavaScript - Registered: 2023-02-03 12:22 - Last Modified: 2019-02-12 17:11 - 1.4K bytes - Viewed (0) -
backtracking/n_queens_math.py
for col in range(n): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b
Python - Registered: 2023-02-02 19:18 - Last Modified: 2023-02-01 13:14 - 4.8K bytes - Viewed (0) -
core/src/test/java/com/alibaba/druid/bvt/sql/hive/HiveInsert_0.java
stmt.accept(visitor); assertEquals("INSERT INTO TABLE students\n" + "VALUES ('fred flintstone', 35, 1.28), ('barney rubble', 32, 2.32);", SQLUtils.formatHive(sql)); assertEquals("insert into table students\n" + "values ('fred flintstone', 35, 1.28), ('barney rubble', 32, 2.32);", SQLUtils.formatHive(sql, SQLUtils.DEFAULT_LCASE_FORMAT_OPTION));
Java - Registered: 2023-01-30 07:39 - Last Modified: 2022-09-12 01:19 - 1.6K bytes - Viewed (0) -
snippets/partition.md
Plain Text - Registered: 2023-02-07 11:25 - Last Modified: 2022-12-04 20:20 - 931 bytes - Viewed (0)