Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 2 of 2 for qInv (0.04 sec)

  1. lib/fips140/v1.0.0.zip

    modular inversion with prime modulus by Fermat's Little // Theorem: qInv = q⁻¹ mod p = q^(p-2) mod p. if p.Nat().IsOdd() == 0 { // [bigmod.Nat.Exp] requires an odd modulus. return nil, errors.New("crypto/rsa: p is even") } pMinusTwo := p.Nat().SubOne(p).SubOne(p).Bytes(p) qInv := bigmod.NewNat().Mod(q.Nat(), p) qInv.Exp(qInv, pMinusTwo, p) pk := &PrivateKey{ pub: PublicKey{ N: n, E: e, }, d: d, p: p, q: q, dP: dP, dQ: dQ, qInv: qInv, } if err := checkPrivateKey(pk); err != nil { return nil, err } return...
    Registered: Tue Sep 09 11:13:09 UTC 2025
    - Last Modified: Wed Jan 29 15:10:35 UTC 2025
    - 635K bytes
    - Viewed (0)
  2. api/go1.txt

    pkg crypto/rsa, type PrecomputedValues struct, CRTValues []CRTValue
    pkg crypto/rsa, type PrecomputedValues struct, Dp *big.Int
    pkg crypto/rsa, type PrecomputedValues struct, Dq *big.Int
    pkg crypto/rsa, type PrecomputedValues struct, Qinv *big.Int
    pkg crypto/rsa, type PrivateKey struct
    pkg crypto/rsa, type PrivateKey struct, D *big.Int
    pkg crypto/rsa, type PrivateKey struct, Precomputed PrecomputedValues
    pkg crypto/rsa, type PrivateKey struct, Primes []*big.Int
    Registered: Tue Sep 09 11:13:09 UTC 2025
    - Last Modified: Wed Aug 14 18:58:28 UTC 2013
    - 1.7M bytes
    - Viewed (0)
Back to top