Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 195 for Lin (0.17 sec)

  1. examples/js/effects/AnaglyphEffect.js

    			"uniform mat3 colorMatrixRight;",
    
    			// These functions implement sRGB linearization and gamma correction
    
    			"float lin( float c ) {",
    			"	return c <= 0.04045 ? c * 0.0773993808 :",
    			"			pow( c * 0.9478672986 + 0.0521327014, 2.4 );",
    			"}",
    
    			"vec4 lin( vec4 c ) {",
    			"	return vec4( lin( c.r ), lin( c.g ), lin( c.b ), c.a );",
    			"}",
    
    			"float dev( float c ) {",
    			"	return c <= 0.0031308 ? c * 12.92",
    JavaScript
    - Registered: 2020-11-25 04:56
    - Last Modified: 2020-10-27 14:56
    - 4K bytes
    - Viewed (0)
  2. searches/ternary_search.py

        Examples
        --------
        >>> lin_search(0, 4, [4, 5, 6, 7], 7)
        3
        >>> lin_search(0, 3, [4, 5, 6, 7], 7)
        -1
        >>> lin_search(0, 2, [-18, 2], -18)
        0
        >>> lin_search(0, 1, [5], 5)
        0
        >>> lin_search(0, 3, ['a', 'c', 'd'], 'c')
        1
        >>> lin_search(0, 3, [.1, .4 , -.1], .1)
        0
        >>> lin_search(0, 3, [.1, .4 , -.1], -.1)
        2
        """
    Python
    - Registered: 2020-11-26 19:18
    - Last Modified: 2020-11-14 17:04
    - 4.8K bytes
    - Viewed (0)
  3. examples/jsm/effects/AnaglyphEffect.js

    			"uniform mat3 colorMatrixRight;",
    
    			// These functions implement sRGB linearization and gamma correction
    
    			"float lin( float c ) {",
    			"	return c <= 0.04045 ? c * 0.0773993808 :",
    			"			pow( c * 0.9478672986 + 0.0521327014, 2.4 );",
    			"}",
    
    			"vec4 lin( vec4 c ) {",
    			"	return vec4( lin( c.r ), lin( c.g ), lin( c.b ), c.a );",
    			"}",
    
    			"float dev( float c ) {",
    			"	return c <= 0.0031308 ? c * 12.92",
    JavaScript
    - Registered: 2020-11-25 04:56
    - Last Modified: 2020-07-29 10:42
    - 4.1K bytes
    - Viewed (0)
  4. lib/subutil/src/main/java/com/blankj/subutil/util/PinyinUtils.java

      nian  bie   tui   ju    deng  ceng  xian  fan   chu   zhong dun   bo    cu    zu    jue   jue   lin   ta    qiao  qiao  pu    liao  dun   cuan  kuang zao   ta    bi    bi    zhu   ju    chu   qiao  dun   chou  ji    wu    yue   nian  lin   lie   zhi   li    zhi   chan  chu   duan  wei   long  lin   xian  wei   zuan  lan   xie   rang  xie   nie   ta    qu    jie   cuan  zuan  xi    kui   jue   lin   shen  gong  dan   none  qu    ti    duo   duo   gong  lang  none  luo   ai    ji    ju    tang  none...
    Java
    - Registered: 2020-11-27 00:33
    - Last Modified: 2019-07-10 11:46
    - 129.1K bytes
    - Viewed (0)
  5. gym/envs/mujoco/humanoid.py

            alive_bonus = 5.0
            data = self.sim.data
            lin_vel_cost = 1.25 * (pos_after - pos_before) / self.dt
            quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum()
            quad_impact_cost = .5e-6 * np.square(data.cfrc_ext).sum()
            quad_impact_cost = min(quad_impact_cost, 10)
            reward = lin_vel_cost - quad_ctrl_cost - quad_impact_cost + alive_bonus
            qpos = self.sim.data.qpos
    Python
    - Registered: 2020-11-23 00:49
    - Last Modified: 2019-04-09 02:26
    - 2K bytes
    - Viewed (0)
  6. examples/distillation/scripts/extract_distilbert.py

            for w in ["weight", "bias"]:
                compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}"] = state_dict[
                    f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
                ]
                compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}"] = state_dict[
                    f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
                ]
    Python
    - Registered: 2020-11-29 10:36
    - Last Modified: 2020-11-22 03:58
    - 4.2K bytes
    - Viewed (0)
  7. src/transformers/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py

    PATTERNS = [
        ["attention", "attn"],
        ["encoder_attention", "encoder_attn"],
        ["q_lin", "q_proj"],
        ["k_lin", "k_proj"],
        ["v_lin", "v_proj"],
        ["out_lin", "out_proj"],
        ["norm_embeddings", "layernorm_embedding"],
        ["position_embeddings", "embed_positions"],
        ["embeddings", "embed_tokens"],
        ["ffn.lin", "fc"],
    ]
    
    
    def rename_state_dict_key(k):
        if k == "embeddings.weight":
    Python
    - Registered: 2020-11-15 10:36
    - Last Modified: 2020-10-07 23:09
    - 3.6K bytes
    - Viewed (0)
  8. src/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py

    PATTERNS = [
        ["attention", "attn"],
        ["encoder_attention", "encoder_attn"],
        ["q_lin", "q_proj"],
        ["k_lin", "k_proj"],
        ["v_lin", "v_proj"],
        ["out_lin", "out_proj"],
        ["norm_embeddings", "layernorm_embedding"],
        ["position_embeddings", "embed_positions"],
        ["embeddings", "embed_tokens"],
        ["ffn.lin", "fc"],
    ]
    
    
    def rename_state_dict_key(k):
        if k == "embeddings.weight":
    Python
    - Registered: 2020-11-29 10:36
    - Last Modified: 2020-11-17 02:43
    - 3.6K bytes
    - Viewed (0)
  9. runtime/ftplugin/man.vim

        exec "let s:man_tag_buf=s:man_tag_buf_".s:man_tag_depth
        exec "let s:man_tag_lin=s:man_tag_lin_".s:man_tag_depth
        exec "let s:man_tag_col=s:man_tag_col_".s:man_tag_depth
        exec s:man_tag_buf."b"
        exec s:man_tag_lin
        exec "norm! ".s:man_tag_col."|"
        exec "unlet s:man_tag_buf_".s:man_tag_depth
        exec "unlet s:man_tag_lin_".s:man_tag_depth
        exec "unlet s:man_tag_col_".s:man_tag_depth
    Plain Text
    - Registered: 2020-11-23 09:55
    - Last Modified: 2020-10-26 20:12
    - 6.4K bytes
    - Viewed (0)
  10. src/transformers/modeling_tf_flaubert.py

            self.q_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin")
            self.k_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin")
            self.v_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin")
    Python
    - Registered: 2020-11-15 10:36
    - Last Modified: 2020-10-29 14:33
    - 34.7K bytes
    - Viewed (0)
Back to top