- Sort Score
- Result 10 results
- Languages All
Results 1 - 3 of 3 for LD_LIBRARY_PATH (0.19 sec)
-
configure.py
environ_cp, 'TF_NEED_ROCM', 'ROCm', False, bazel_config_name='rocm') if (environ_cp.get('TF_NEED_ROCM') == '1' and 'LD_LIBRARY_PATH' in environ_cp and environ_cp.get('LD_LIBRARY_PATH') != '1'): write_action_env_to_bazelrc('LD_LIBRARY_PATH', environ_cp.get('LD_LIBRARY_PATH')) if (environ_cp.get('TF_NEED_ROCM') == '1' and environ_cp.get('ROCM_PATH')):
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Oct 02 22:16:02 UTC 2024 - 48.2K bytes - Viewed (0) -
CONTRIBUTING.md
``` * For TensorFlow versions prior v.2.18.0: Add CUDA paths to LD_LIBRARY_PATH and add the `cuda` option flag. ```bash export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH" export flags="--config=opt --config=cuda -k" ```
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Oct 23 06:20:12 UTC 2024 - 15.9K bytes - Viewed (0) -
.github/bot_config.yml
* If you have above configuration and using _**Ubuntu/Linux**_ platform - * Try adding the CUDA, CUPTI, and cuDNN installation directories to the $LD_LIBRARY_PATH environment variable. * Refer [linux setup guide](https://www.tensorflow.org/install/gpu#linux_setup). * If error still persists then, apparently your CPU model does not support AVX instruction sets.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Jul 15 05:00:54 UTC 2024 - 4K bytes - Viewed (0)