- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 63 for Keras (0.04 sec)
-
tensorflow/api_template_v1.__init__.py
import tensorflow_io_gcs_filesystem as _tensorflow_io_gcs_filesystem # Lazy-load Keras v1. _tf_uses_legacy_keras = ( _os.environ.get("TF_USE_LEGACY_KERAS", None) in ("true", "True", "1")) setattr(_current_module, "keras", _KerasLazyLoader(globals(), mode="v1")) _module_dir = _module_util.get_parent_dir_for_name("keras._tf_keras.keras") _current_module.__path__ = [_module_dir] + _current_module.__path__ if _tf_uses_legacy_keras:
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Oct 02 22:16:02 UTC 2024 - 7.5K bytes - Viewed (0) -
tensorflow/api_template.__init__.py
import tensorflow_io_gcs_filesystem as _tensorflow_io_gcs_filesystem # Lazy-load Keras v2/3. _tf_uses_legacy_keras = ( _os.environ.get("TF_USE_LEGACY_KERAS", None) in ("true", "True", "1")) setattr(_current_module, "keras", _KerasLazyLoader(globals())) _module_dir = _module_util.get_parent_dir_for_name("keras._tf_keras.keras") _current_module.__path__ = [_module_dir] + _current_module.__path__ if _tf_uses_legacy_keras:
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Oct 02 22:16:02 UTC 2024 - 6.8K bytes - Viewed (0) -
ci/official/requirements_updater/numpy1_requirements/requirements.in
wrapt == 1.16.0 tblib == 2.0.0 ml_dtypes >= 0.5.1, < 0.6.0 auditwheel >= 6.1.0 # Install tensorboard, and keras # Note that here we want the latest version that matches TF major.minor version # Note that we must use nightly here as these are used in nightly jobs # For release jobs, we will pin these on the release branch keras-nightly ~= 3.10.0.dev tb-nightly ~= 2.20.0.a
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Sep 03 23:57:17 UTC 2025 - 1.2K bytes - Viewed (0) -
RELEASE.md
* Keras 3.0 will be the default Keras version. You may need to update your script to use Keras 3.0. * Please refer to the new Keras documentation for Keras 3.0 (https://keras.io/keras_3). * To continue using Keras 2.0, do the following. * 1. Install tf-keras via pip install tf-keras~=2.16 1. To switch tf.keras to use Keras 2 (tf-keras), set the environment
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Aug 18 20:54:38 UTC 2025 - 740K bytes - Viewed (1) -
requirements_lock_3_13.txt
# via # -r ci/official/requirements_updater/requirements.in # jax # keras-nightly namex==0.0.9 \ --hash=sha256:7bd4e4a2cc3876592111609fdf4cbe6ff19883adbe6b3b40d842fd340f77025e \ --hash=sha256:8adfea9da5cea5be8f4e632349b4669e30172c7859e1fd97459fdf3b17469253 # via keras-nightly numpy==2.1.3 \ --hash=sha256:016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe \
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Sep 03 23:57:17 UTC 2025 - 66.2K bytes - Viewed (0) -
ci/official/requirements_updater/requirements.in
wrapt == 1.16.0 tblib == 2.0.0 ml_dtypes >= 0.5.1, < 0.6.0 auditwheel >= 6.1.0 # Install tensorboard, and keras # Note that here we want the latest version that matches TF major.minor version # Note that we must use nightly here as these are used in nightly jobs # For release jobs, we will pin these on the release branch keras-nightly ~= 3.10.0.dev tb-nightly ~= 2.20.0.a
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Sep 03 23:57:17 UTC 2025 - 1.2K bytes - Viewed (0) -
ci/official/utilities/rename_and_verify_wheels.sh
"$python" -c 'import tensorflow as tf; t1=tf.constant([1,2,3,4]); t2=tf.constant([5,6,7,8]); print(tf.add(t1,t2).shape)' "$python" -c 'import sys; import tensorflow as tf; sys.exit(0 if "keras" in tf.keras.__name__ else 1)' fi # Import tf nightly wheel built with numpy2 from PyPI in numpy1 env for testing. # This aims to maintain TF compatibility with NumPy 1.x until 2025 b/361369076.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Fri Apr 25 00:22:38 UTC 2025 - 4.7K bytes - Viewed (0) -
requirements_lock_3_11.txt
# via # -r ci/official/requirements_updater/requirements.in # jax # keras-nightly namex==0.0.8 \ --hash=sha256:32a50f6c565c0bb10aa76298c959507abdc0e850efe085dc38f3440fcb3aa90b \ --hash=sha256:7ddb6c2bb0e753a311b7590f84f6da659dd0c05e65cb89d519d54c0a250c0487 # via keras-nightly numpy==2.1.3 \ --hash=sha256:016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe \
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Sep 03 23:57:17 UTC 2025 - 67.7K bytes - Viewed (0) -
ci/official/requirements_updater/numpy1_requirements/requirements_lock_3_10.txt
# via # -r ci/official/requirements_updater/requirements.in # jax # keras-nightly namex==0.0.9 \ --hash=sha256:7bd4e4a2cc3876592111609fdf4cbe6ff19883adbe6b3b40d842fd340f77025e \ --hash=sha256:8adfea9da5cea5be8f4e632349b4669e30172c7859e1fd97459fdf3b17469253 # via keras-nightly numpy==1.26.4 \ --hash=sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b \
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Sep 03 23:57:17 UTC 2025 - 66.1K bytes - Viewed (0) -
ci/official/requirements_updater/numpy1_requirements/requirements_lock_3_12.txt
# via # -r ci/official/requirements_updater/requirements.in # jax # keras-nightly namex==0.0.9 \ --hash=sha256:7bd4e4a2cc3876592111609fdf4cbe6ff19883adbe6b3b40d842fd340f77025e \ --hash=sha256:8adfea9da5cea5be8f4e632349b4669e30172c7859e1fd97459fdf3b17469253 # via keras-nightly numpy==1.26.4 \ --hash=sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b \
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Sep 03 23:57:17 UTC 2025 - 66.1K bytes - Viewed (0)