Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 52 for Graves (0.16 sec)

  1. top100papers.bib

    and Bordes, Antoine}, journal={arXiv preprint arXiv:1410.3916}, year={2014} } @article{graves2014neural, title={Neural turing machines}, author={Graves, Alex and Wayne, Greg and Danihelka, Ivo}, journal={arXiv preprint arXiv:1410.5401}, year={2014} } @article{graves2013generating, title={Generating sequences with recurrent neural networks}, author={Graves, Alex}, journal={arXiv preprint arXiv:1308.0850}, year={2013} } @article{chung2016character, title={A character-level decoder without explicit segmentation...
    Others
    - Registered: 2020-06-22 21:48
    - Last Modified: 2017-05-08 13:36
    - 29.6K bytes
    - Viewed (0)
  2. README.md

    - **Hybrid computing using a neural network with dynamic external memory** (2016), A. Graves et al. [[pdf]](https://www.gwern.net/docs/2016-graves.pdf)
    - **Google's neural machine translation system: Bridging the gap between human and machine translation** (2016), Y. Wu et al. [[pdf]](https://arxiv.org/pdf/1609.08144)
    
    * * *
    
    
    Plain Text
    - Registered: 2020-06-22 21:48
    - Last Modified: 2018-10-19 07:28
    - 43.8K bytes
    - Viewed (0)
  3. 3rdparty/openexr/AUTHORS.openexr

    Win32 build system:
    -------------------
    
    Nick Porcino <******@****.***>
    Kimball Thurston
    
    Win32 port contributors:
    ------------------------
    
    Dustin Graves <******@****.***>
    Jukka Liimatta <******@****.***>
    Baumann Konstantin <******@****.***>
    Daniel Koch <******@****.***>
    E. Scott Larsen <******@****.***>
    Plain Text
    - Registered: 2020-07-10 05:16
    - Last Modified: 2019-06-10 17:04
    - 1.2K bytes
    - Viewed (0)
  4. include/caffe/layers/lstm_layer.hpp

     * LSTM architectures described by Alex Graves [3] and others.
     *
     * [1] Hochreiter, Sepp, and Schmidhuber, Jürgen. "Long short-term memory."
     *     Neural Computation 9, no. 8 (1997): 1735-1780.
     *
     * [2] Zaremba, Wojciech, and Sutskever, Ilya. "Learning to execute."
     *     arXiv preprint arXiv:1410.4615 (2014).
     *
     * [3] Graves, Alex. "Generating sequences with recurrent neural networks."
    C++
    - Registered: 2020-06-18 17:48
    - Last Modified: 2016-06-01 22:29
    - 5.9K bytes
    - Viewed (0)
  5. README.md

    **[9]** Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "**Speech recognition with deep recurrent neural networks**." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [[pdf]](http://arxiv.org/pdf/1303.5778.pdf) **(RNN)**:star::star::star:
    
    Plain Text
    - Registered: 2020-06-19 19:31
    - Last Modified: 2018-03-07 19:20
    - 33.2K bytes
    - Viewed (0)
  6. aten/src/ATen/native/LossCTC.cpp

    // Licensed under the BSD-3-Clause license
    // This is the CPU implementation of the Connectionist Temporal Loss.
    // We mostly follow Graves.
    // 1. Graves et al: http://www.cs.toronto.edu/~graves/icml_2006.pdf
    // We use the equations from above link, but note that [1] has 1-based indexing and we (of course) use 0-based.
    // Graves et al call the probabilities y, we use log_probs (also calling them inputs)
    
    #include <ATen/ATen.h>
    #include <ATen/Dispatch.h>
    C++
    - Registered: 2020-07-12 05:39
    - Last Modified: 2019-11-20 00:18
    - 18.5K bytes
    - Viewed (0)
  7. research/street/python/decoder.py

    """Basic CTC+recoder decoder.
    
    Decodes a sequence of class-ids into UTF-8 text.
    For basic information on CTC See:
    Alex Graves et al. Connectionist Temporal Classification: Labelling Unsegmented
    Sequence Data with Recurrent Neural Networks.
    http://www.cs.toronto.edu/~graves/icml_2006.pdf
    """
    import collections
    import re
    
    import errorcounter as ec
    from six.moves import xrange
    import tensorflow as tf
    
    Python
    - Registered: 2020-06-19 13:06
    - Last Modified: 2018-01-20 14:03
    - 9.9K bytes
    - Viewed (0)
  8. research/deep_speech/README.md

    layers and a fully connected layer. The feature in use is linear spectrogram
    extracted from audio input. The network uses Connectionist Temporal Classification [CTC](https://www.cs.toronto.edu/~graves/icml_2006.pdf) as the loss function.
    
    ## Dataset
    The [OpenSLR LibriSpeech Corpus](http://www.openslr.org/12/) are used for model training and evaluation.
    
    Plain Text
    - Registered: 2020-06-19 13:06
    - Last Modified: 2020-04-13 04:37
    - 3.3K bytes
    - Viewed (0)
  9. Chapter10/sequence_modeling_rnn.tex

    间存在语言学上的依赖:如果当前的词有两种声学上合理的解释,我们可能要在更远的未来(和过去)寻找信息区分它们。 这在手写识别和许多其他序列到序列学习的任务中也是如此,将会在下一节中描述。 双向\gls{RNN}(或双向~\glssymbol{RNN})为满足这种需要而被发明\citep{Schuster+Paliwal-1997}。 他们在需要双向信息的应用中非常成功\citep{Graves-book2012},如手写识别\citep{Graves-et-al-NIPS2007,Graves+Schmidhuber-2009},语音识别\citep{Graves+Schmidhuber-2005,Graves-et-al-ICASSP2013}以及生物信息学\citep{Baldi-et-al-1999}。 顾名思义,双向~\glssymbol{RNN}~结合时间上从序列起点开始移动的~\glssymbol{RNN}~和另一个时间上从序列末尾开始移动的~\glssymbol{RNN}。 \figref{fig:chap10_bidirectional_rnn}展示了典型的双向~\gls...
    Others
    - Registered: 2020-07-16 11:44
    - Last Modified: 2019-11-09 15:50
    - 95.9K bytes
    - Viewed (0)
  10. DONORS.md

        Jaime Ruiz-Borau Vizárraga
        Jako Danar
        James A F Manley
        Jamiee H
        Jamie Massey
        Janders
        JARKKO PARVIAINEN
        Jean-Baptiste LEPESME
        Jeff Hungerford
        Jennifer Graves
        Jesse Dubay
        Joe Alden
        Joel Fivat
        Joel Höglund
        Joel Setterberg
        Johannes Goslar
        John Gabriel
        John Walker
        Jomei Jackson
        Jonas
        Jonas Bernemann
    Plain Text
    - Registered: 2020-07-15 16:01
    - Last Modified: 2020-07-03 14:02
    - 10.4K bytes
    - Viewed (0)
Back to top