Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 283 for Cramer (0.52 sec)

  1. matrix/cramers_rule_2x2.py

        determinant_y = [[a1, d1], [a2, d2]]
    
        >>> cramers_rule_2x2([2, 3, 0], [5, 1, 0])
        (0.0, 0.0)
        >>> cramers_rule_2x2([0, 4, 50], [2, 0, 26])
        (13.0, 12.5)
        >>> cramers_rule_2x2([11, 2, 30], [1, 0, 4])
        (4.0, -7.0)
        >>> cramers_rule_2x2([4, 7, 1], [1, 2, 0])
        (2.0, -1.0)
    
        >>> cramers_rule_2x2([1, 2, 3], [2, 4, 6])
        Traceback (most recent call last):
            ...
    Python
    - Registered: 2022-12-01 19:18
    - Last Modified: 2022-11-06 14:54
    - 3K bytes
    - Viewed (0)
  2. examples/oauth2_consumer_implicit/package.json

      "main": "index.js",
      "scripts": {
        "test": "echo \"Error: no test specified\" && exit 1",
        "build": "webpack",
        "prestart": "webpack",
        "start": "http-server"
      },
      "author": "David Cramer <dcramer@gmail.com> (https://github.com/dcramer)",
      "license": "ISC",
      "dependencies": {
        "babel-core": "^6.23.1",
        "babel-loader": "^6.3.2",
        "babel-preset-env": "^1.2.0",
        "http-server": "^0.9.0",
    Json
    - Registered: 2022-09-19 23:34
    - Last Modified: 2017-03-20 23:33
    - 564 bytes
    - Viewed (0)
  3. fixtures/js-stubs/phabricator.js

          required: false,
          label: 'Assignee',
          has_autocomplete: true,
          placeholder: 'Start typing to search for an assignee',
        },
      ];
    }
    
    const DEFAULT_AUTOCOMPLETE_ASSIGNEE = {
      text: 'David Cramer (zeeg)',
      id: 'PHID-USER-53avnyn5r6z6daqjfwdo',
    };
    
    const DEFAULT_AUTOCOMPLETE_TAG1 = {text: 'Bar', id: 'PHID-PROJ-biz3qujawd2dfknvhpqv'};
    JavaScript
    - Registered: 2022-10-03 23:34
    - Last Modified: 2022-06-08 18:19
    - 2.6K bytes
    - Viewed (0)
  4. plugins/codemirror/mode/idl/idl.js

    JavaScript
    - Registered: 2022-11-28 07:18
    - Last Modified: 2021-01-27 07:12
    - 14.5K bytes
    - Viewed (0)
  5. 专业课/高等代数/高等代数(上)定理总结.pdf

    2.3 行列式的性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    2.4 行列式按一行 (列) 展开 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    2.5 Cramer 法则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    2.6 行列式按 k 行 (列) 展开 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
    PDF
    - Registered: 2022-12-04 02:06
    - Last Modified: 2019-06-12 04:46
    - 202.6K bytes
    - Viewed (0)
  6. 3rdparty/libpng/png.c

        *
        * This is 9 simultaneous equations in the 9 variables "color-C" and can be
        * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
        * determinants, however this is not as bad as it seems because only 28 of
        * the total of 90 terms in the various matrices are non-zero.  Nevertheless
        * Cramer's rule is notoriously numerically unstable because the determinant
    C
    - Registered: 2022-12-02 05:16
    - Last Modified: 2019-06-03 11:49
    - 153.7K bytes
    - Viewed (1)
  7. examples/docs/es/drawer.md

    ### Drawer Slot's
    
    | Nombre | Descripción |
    |------|--------|
    | — | El contenido del Drawer |
    | title | El titulo de la sección del Drawer |
    
    ### Métodos Drawer
    
    | Nombre | Descripción |
    | ---- | ---  |
    | closeDrawer | Para cerrar el Drawer, este método llamará `before-close`. |
    
    ### Eventos Drawer
    
    | Nombre | Descripción | Parámetros |
    Plain Text
    - Registered: 2022-11-27 12:44
    - Last Modified: 2020-08-18 02:22
    - 10.5K bytes
    - Viewed (0)
  8. components/drawer/__tests__/__snapshots__/Drawer.test.tsx.snap

    exports[`Drawer className is test_drawer 1`] = `
    <div
      class="ant-drawer ant-drawer-right test_drawer ant-drawer-open ant-drawer-inline"
      tabindex="-1"
    >
      <div
        class="ant-drawer-mask"
      />
      <div
        aria-hidden="true"
        data-sentinel="start"
        style="width: 0px; height: 0px; overflow: hidden; outline: none; position: absolute;"
        tabindex="0"
      />
      <div
        class="ant-drawer-content-wrapper"
    Plain Text
    - Registered: 2022-11-29 14:58
    - Last Modified: 2022-09-05 11:41
    - 17.3K bytes
    - Viewed (0)
  9. 专业课/高等代数/高等代数(上)定理总结.tex

    $n$阶行列式$|A|$的第$i$行(列)元素与第$k$行(列)相应元素的代数余子式的乘积之和等于零,和定理\ref{thrm:238}一起可以写成: \[ \sum_{j=1}^na_{ij}A_{kj}= \begin{cases} |A| &,k=i \\ 0 &,k\ne i \end{cases} \] \[ \sum_{i=1}^na_{ij}A_{il}= \begin{cases} |A| &,j=l \\ 0 &,j\ne l \end{cases} \] \end{thrm} \subsection{Cramer法则} \begin{thrm} $n$个方程的$n$元\textbf{线性方程组},如果它的系数行列式$|A|\ne 0$,则它有唯一解(这也是充要条件);如果$|A|=0$,则它无解或无穷多解. \end{thrm} \begin{ccl} $n$个方程的$n$元\textbf{齐次线性方程组}只有零解的充要条件是它的系数行列式不等于零,有非零解的充要条件是系数行列式等于$0$. \end{ccl} \begin{thrm} $n$个方程的$n$元线性方程组的系数行列式$|A|\ne 0$时,它的唯一解是:...
    Others
    - Registered: 2022-12-04 02:06
    - Last Modified: 2019-06-12 04:46
    - 44.2K bytes
    - Viewed (0)
  10. AUTHORS

    Michael Chiang <******@****.***>
    Michael Crosby <******@****.***>
    Michael Currie <******@****.***>
    Michael Friis <******@****.***>
    Michael Gorsuch <******@****.***>
    Michael Grauer <michael.grauer@kitware.com>
    Michael Holzheu <******@****.***>
    Michael Hudson-Doyle <******@****.***>
    Michael Huettermann <******@****.***>
    Michael Irwin <******@****.***>
    Plain Text
    - Registered: 2022-11-30 12:04
    - Last Modified: 2022-06-03 10:29
    - 86.8K bytes
    - Viewed (0)
Back to top