- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 36 for Cordell (0.08 sec)
-
docs/de/docs/tutorial/body-updates.md
Zusammengefasst, um Teil-Ersetzungen vorzunehmen: * (Optional) verwenden Sie `PATCH` statt `PUT`. * Lesen Sie die bereits gespeicherten Daten aus. * Fügen Sie diese in ein Pydantic-Modell ein. * Erzeugen Sie aus dem empfangenen Modell ein `dict` ohne Defaultwerte (mittels `exclude_unset`).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 6.4K bytes - Viewed (0) -
docs/de/docs/tutorial/encoder.md
Genauso würde die Datenbank kein Pydantic-Modell (ein Objekt mit Attributen) akzeptieren, sondern nur ein `dict`. Sie können für diese Fälle `jsonable_encoder` verwenden. Es nimmt ein Objekt entgegen, wie etwa ein Pydantic-Modell, und gibt eine JSON-kompatible Version zurück: //// tab | Python 3.10+ ```Python hl_lines="4 21"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 1.9K bytes - Viewed (0) -
docs/de/docs/advanced/path-operation-advanced-configuration.md
``` //// /// info In Pydantic Version 1 hieß die Methode zum Abrufen des JSON-Schemas für ein Modell `Item.schema()`, in Pydantic Version 2 heißt die Methode `Item.model_json_schema()`. /// Obwohl wir nicht die standardmäßig integrierte Funktionalität verwenden, verwenden wir dennoch ein Pydantic-Modell, um das JSON-Schema für die Daten, die wir in YAML empfangen möchten, manuell zu generieren.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8.5K bytes - Viewed (0) -
docs/de/docs/how-to/separate-openapi-schemas.md
Tatsächlich gibt es in einigen Fällen sogar **zwei JSON-Schemas** in OpenAPI für dasselbe Pydantic-Modell für Eingabe und Ausgabe, je nachdem, ob sie **Defaultwerte** haben. Sehen wir uns an, wie das funktioniert und wie Sie es bei Bedarf ändern können. ## Pydantic-Modelle für Eingabe und Ausgabe Nehmen wir an, Sie haben ein Pydantic-Modell mit Defaultwerten wie dieses: //// tab | Python 3.10+ ```Python hl_lines="7"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 7K bytes - Viewed (0) -
docs/de/docs/tutorial/extra-models.md
# Extramodelle Fahren wir beim letzten Beispiel fort. Es gibt normalerweise mehrere zusammengehörende Modelle. Insbesondere Benutzermodelle, denn: * Das **hereinkommende Modell** sollte ein Passwort haben können. * Das **herausgehende Modell** sollte kein Passwort haben.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8.7K bytes - Viewed (0) -
docs/de/docs/tutorial/response-model.md
Zum Beispiel könnten Sie **ein Dict zurückgeben** wollen, oder ein Datenbank-Objekt, aber **es als Pydantic-Modell deklarieren**. Auf diese Weise übernimmt das Pydantic-Modell alle Datendokumentation, -validierung, usw. für das Objekt, welches Sie zurückgeben (z. B. ein Dict oder ein Datenbank-Objekt).
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 19.8K bytes - Viewed (0) -
docs/de/docs/advanced/additional-responses.md
Jedes dieser Response-`dict`s kann einen Schlüssel `model` haben, welcher ein Pydantic-Modell enthält, genau wie `response_model`. **FastAPI** nimmt dieses Modell, generiert dessen JSON-Schema und fügt es an der richtigen Stelle in OpenAPI ein. Um beispielsweise eine weitere Response mit dem Statuscode `404` und einem Pydantic-Modell `Message` zu deklarieren, können Sie schreiben: ```Python hl_lines="18 22"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 9.6K bytes - Viewed (0) -
docs/de/docs/tutorial/security/get-current-user.md
Und Sie können alle Modelle und Daten für die Sicherheitsanforderungen verwenden (in diesem Fall ein Pydantic-Modell `User`). Sie sind jedoch nicht auf die Verwendung von bestimmten Datenmodellen, Klassen, oder Typen beschränkt. Möchten Sie eine `id` und eine `email` und keinen `username` in Ihrem Modell haben? Kein Problem. Sie können dieselben Tools verwenden.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8.3K bytes - Viewed (0) -
docs/de/docs/tutorial/body-nested-models.md
Aber dieser Typ kann selbst ein anderes Pydantic-Modell sein. Sie können also tief verschachtelte JSON-„Objekte“ deklarieren, mit spezifischen Attributnamen, -typen, und -validierungen. Alles das beliebig tief verschachtelt. ### Ein Kindmodell definieren Wir können zum Beispiel ein `Image`-Modell definieren. //// tab | Python 3.10+ ```Python hl_lines="7-9"
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 10.3K bytes - Viewed (0) -
docs/de/docs/advanced/events.md
Stellen wir uns vor, dass das Laden des Modells **eine ganze Weile dauern** kann, da viele **Daten von der Festplatte** gelesen werden müssen. Sie möchten das also nicht für jeden Request tun.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 9.1K bytes - Viewed (0)