- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 32 for response_mode (0.06 sec)
-
docs/de/docs/tutorial/response-model.md
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Wed Dec 24 10:28:19 UTC 2025 - 17.5K bytes - Viewed (0) -
tests/benchmarks/test_general_performance.py
app = FastAPI() @app.post("/sync/validated", response_model=ItemOut) def sync_validated(item: ItemIn, dep: Annotated[int, Depends(dep_b)]): return ItemOut(name=item.name, value=item.value, dep=dep) @app.get("/sync/dict-no-response-model") def sync_dict_no_response_model(): return {"name": "foo", "value": 123} @app.get("/sync/dict-with-response-model", response_model=ItemOut) def sync_dict_with_response_model(
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 20:40:26 UTC 2025 - 11.1K bytes - Viewed (0) -
docs/de/docs/advanced/dataclasses.md
Wenn Sie jedoch eine Menge Datenklassen herumliegen haben, ist dies ein guter Trick, um sie für eine Web-API mithilfe von FastAPI zu verwenden. 🤓 /// ## Datenklassen in `response_model` { #dataclasses-in-response-model } Sie können `dataclasses` auch im Parameter `response_model` verwenden: {* ../../docs_src/dataclasses_/tutorial002_py310.py hl[1,6:12,18] *} Die Datenklasse wird automatisch in eine Pydantic-Datenklasse konvertiert.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 10:43:02 UTC 2025 - 5K bytes - Viewed (0) -
docs/en/docs/advanced/dataclasses.md
But if you have a bunch of dataclasses laying around, this is a nice trick to use them to power a web API using FastAPI. 🤓 /// ## Dataclasses in `response_model` { #dataclasses-in-response-model } You can also use `dataclasses` in the `response_model` parameter: {* ../../docs_src/dataclasses_/tutorial002_py310.py hl[1,6:12,18] *} The dataclass will be automatically converted to a Pydantic dataclass.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 10:43:02 UTC 2025 - 4.2K bytes - Viewed (0) -
tests/test_response_model_as_return_annotation.py
@app.get("/response_model-no_annotation-return_invalid_dict", response_model=User) def response_model_no_annotation_return_invalid_dict(): return {"name": "John"} @app.get("/response_model-no_annotation-return_invalid_model", response_model=User) def response_model_no_annotation_return_invalid_model(): return Item(name="Foo", price=42.0) @app.get( "/response_model-no_annotation-return_dict_with_extra_data", response_model=User )
Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 12:54:56 UTC 2025 - 47.7K bytes - Viewed (0) -
fastapi/routing.py
self.endpoint = endpoint if isinstance(response_model, DefaultPlaceholder): return_annotation = get_typed_return_annotation(endpoint) if lenient_issubclass(return_annotation, Response): response_model = None else: response_model = return_annotation self.response_model = response_model self.summary = summaryRegistered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Sat Dec 27 12:54:56 UTC 2025 - 174.6K bytes - Viewed (0) -
docs/pt/docs/advanced/dataclasses.md
Mas se você tem um monte de dataclasses por aí, este é um truque legal para usá-las para alimentar uma API web usando FastAPI. 🤓 /// ## Dataclasses em `response_model` { #dataclasses-in-response-model } Você também pode usar `dataclasses` no parâmetro `response_model`: {* ../../docs_src/dataclasses_/tutorial002_py310.py hl[1,6:12,18] *} A dataclass será automaticamente convertida para uma dataclass Pydantic.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 10:43:02 UTC 2025 - 4.5K bytes - Viewed (0) -
docs/es/docs/advanced/dataclasses.md
Pero si tienes un montón de dataclasses por ahí, este es un buen truco para usarlos para potenciar una API web usando FastAPI. 🤓 /// ## Dataclasses en `response_model` { #dataclasses-in-response-model } También puedes usar `dataclasses` en el parámetro `response_model`: {* ../../docs_src/dataclasses_/tutorial002_py310.py hl[1,6:12,18] *} El dataclass será automáticamente convertido a un dataclass de Pydantic.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 10:43:02 UTC 2025 - 4.5K bytes - Viewed (0) -
docs/ru/docs/advanced/dataclasses.md
Но если у вас уже есть набор dataclasses, это полезный приём — задействовать их для веб-API на FastAPI. 🤓 /// ## Dataclasses в `response_model` { #dataclasses-in-response-model } Вы также можете использовать `dataclasses` в параметре `response_model`: {* ../../docs_src/dataclasses_/tutorial002_py310.py hl[1,6:12,18] *} Этот dataclass будет автоматически преобразован в Pydantic dataclass.Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 10:43:02 UTC 2025 - 6.6K bytes - Viewed (0) -
docs/zh/docs/advanced/dataclasses.md
数据类的和运作方式与 Pydantic 模型相同。实际上,它的底层使用的也是 Pydantic。 /// info | 说明 注意,数据类不支持 Pydantic 模型的所有功能。 因此,开发时仍需要使用 Pydantic 模型。 但如果数据类很多,这一技巧能给 FastAPI 开发 Web API 增添不少助力。🤓 /// ## `response_model` 使用数据类 在 `response_model` 参数中使用 `dataclasses`: {* ../../docs_src/dataclasses_/tutorial002.py hl[1,7:13,19] *} 本例把数据类自动转换为 Pydantic 数据类。 API 文档中也会显示相关概图: <img src="/img/tutorial/dataclasses/image01.png">Registered: Sun Dec 28 07:19:09 UTC 2025 - Last Modified: Fri Dec 26 10:43:02 UTC 2025 - 3.7K bytes - Viewed (0)