- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 49 for tf (0.02 sec)
-
ci/official/utilities/setup_docker.sh
if [[ "$TFCI_DOCKER_REBUILD_UPLOAD_ENABLE" == 1 ]]; then docker push "$TFCI_DOCKER_IMAGE" fi fi # Keep the existing "tf" container if it's already present. # The container is not cleaned up automatically! Remove it with: # docker rm tf if ! docker container inspect tf >/dev/null 2>&1 ; then # Pass all existing TFCI_ variables into the Docker container env_file=$(mktemp) env | grep ^TFCI_ > "$env_file"
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Aug 09 16:05:18 UTC 2024 - 2.8K bytes - Viewed (0) -
.github/workflows/update-rbe.yml
# to tag names on gcr.io/tensorflow-sigs/build. # TF 2.9 map sigbuild-r2.9 2.9-python3.9 map sigbuild-r2.9-python3.8 2.9-python3.8 map sigbuild-r2.9-python3.9 2.9-python3.9 map sigbuild-r2.9-python3.10 2.9-python3.10 # TF 2.10 map sigbuild-r2.10 2.10-python3.9 map sigbuild-r2.10-python3.8 2.10-python3.8
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Nov 01 08:40:10 UTC 2024 - 7.2K bytes - Viewed (0) -
RELEASE.md
* Added a new boolean argument `allow_fast_lookup` to `tf.nn.embedding_lookup_sparse` and `tf.nn.safe_embedding_lookup_sparse`, which enables a simplified and typically faster lookup procedure. * `tf.data` * `tf.data.Dataset.zip` now supports Python-style zipping, i.e. `Dataset.zip(a, b, c)`.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Oct 22 14:33:53 UTC 2024 - 735.3K bytes - Viewed (0) -
ci/official/containers/linux_arm64/devel.usertools/aarch64.bazelrc
# This bazelrc can build a CPU-supporting TF package. # Convenient cache configurations # Use a cache directory mounted to /tf/cache. Very useful! build:sigbuild_local_cache --disk_cache=/tf/cache # Use the public-access TF DevInfra cache (read only) build:sigbuild_remote_cache --remote_cache="https://storage.googleapis.com/tensorflow-devinfra-bazel-cache/manylinux2014" --remote_upload_local_results=false
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Jul 12 20:16:57 UTC 2024 - 5.7K bytes - Viewed (0) -
ci/official/containers/linux_arm64/devel.usertools/aarch64_clang.bazelrc
# This bazelrc can build a CPU-supporting TF package. # Convenient cache configurations # Use a cache directory mounted to /tf/cache. Very useful! build:sigbuild_local_cache --disk_cache=/tf/cache # Use the public-access TF DevInfra cache (read only) build:sigbuild_remote_cache --remote_cache="https://storage.googleapis.com/tensorflow-devinfra-bazel-cache/manylinux2014" --remote_upload_local_results=false
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Jul 12 20:16:57 UTC 2024 - 6.2K bytes - Viewed (0) -
ci/official/utilities/rename_and_verify_wheels.sh
"$python" -m pip install tf-nightly-cpu if [[ "$TFCI_WHL_IMPORT_TEST_ENABLE" == "1" ]]; then "$python" -c 'import tensorflow as tf; t1=tf.constant([1,2,3,4]); t2=tf.constant([5,6,7,8]); print(tf.add(t1,t2).shape)' "$python" -c 'import sys; import tensorflow as tf; sys.exit(0 if "keras" in tf.keras.__name__ else 1)' fi fi # VERY basic check to ensure the [and-cuda] package variant is installable.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Oct 02 21:18:17 UTC 2024 - 4.3K bytes - Viewed (0) -
.github/bot_config.yml
* For TF-GPU - See point 1 * For TF-CPU - See point 2 ----------------------------------------------------------------------------------------------- **1. Installing **TensorFlow-GPU** (TF) prebuilt binaries** Make sure you are using compatible TF and CUDA versions. Please refer following TF version and CUDA version compatibility table.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Jul 15 05:00:54 UTC 2024 - 4K bytes - Viewed (0) -
.bazelrc
# monolithic: Build all TF C++ code into a single shared object. # dynamic_kernels: Try to link all kernels dynamically (experimental). # dbg: Build with debug info # # TF version options; # v2: Build TF v2 # # Feature and Third party library support options: # xla: Build TF with XLA # tpu: Build TF with TPU support # cuda: Build with CUDA support.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 28 22:02:31 UTC 2024 - 51.3K bytes - Viewed (0) -
src/archive/tar/writer_test.go
} for j, tf := range v.tests { switch tf := tf.(type) { case testWrite: got, err := fw.Write([]byte(tf.str)) if got != tf.wantCnt || err != tf.wantErr { t.Errorf("test %d.%d, Write(%s):\ngot (%d, %v)\nwant (%d, %v)", i, j, tf.str, got, err, tf.wantCnt, tf.wantErr) } case testReadFrom: f := &testFile{ops: tf.ops} got, err := fw.ReadFrom(f)
Registered: Tue Nov 05 11:13:11 UTC 2024 - Last Modified: Mon Sep 23 14:32:33 UTC 2024 - 39.4K bytes - Viewed (0) -
ci/official/requirements_updater/numpy1_requirements/requirements.in
typing_extensions == 4.8.0 gast == 0.4.0 termcolor == 2.3.0 wrapt == 1.16.0 tblib == 2.0.0 ml_dtypes >= 0.4.0, < 0.5.0 # Install tensorboard, and keras # Note that here we want the latest version that matches TF major.minor version # Note that we must use nightly here as these are used in nightly jobs # For release jobs, we will pin these on the release branch keras-nightly ~= 3.0.0.dev tb-nightly ~= 2.18.0.a # Test dependencies
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Fri Oct 11 22:42:53 UTC 2024 - 874 bytes - Viewed (0)