Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 4 of 4 for newConn (0.03 sec)

  1. src/test/java/jcifs/smb/SmbTreeConnectionTest.java

        void getConfig_returnsConfig() {
            SmbTreeConnection c = newConn();
            assertSame(config, c.getConfig());
        }
    
        @Test
        @DisplayName("acquire calls tree.acquire on first usage, release calls tree.release at zero")
        void acquire_release_lifecycle() {
            SmbTreeConnection c = newConn();
            SmbTreeImpl tree = mock(SmbTreeImpl.class);
    Registered: Sat Dec 20 13:44:44 UTC 2025
    - Last Modified: Thu Aug 14 07:14:38 UTC 2025
    - 13K bytes
    - Viewed (0)
  2. internal/ringbuffer/ring_buffer.go

    // This setting should be called before any Read or Write operation or after a Reset.
    func (r *RingBuffer) SetBlocking(block bool) *RingBuffer {
    	r.block = block
    	if block {
    		r.readCond = sync.NewCond(&r.mu)
    		r.writeCond = sync.NewCond(&r.mu)
    	}
    	return r
    }
    
    // WithCancel sets a context to cancel the ring buffer.
    // When the context is canceled, the ring buffer will be closed with the context error.
    Registered: Sun Dec 28 19:28:13 UTC 2025
    - Last Modified: Sun Sep 28 20:59:21 UTC 2025
    - 13.3K bytes
    - Viewed (0)
  3. cmd/metacache-entries_test.go

    	want := []string{"src/compress/bzip2/bit_reader.go", "src/compress/bzip2/bzip2.go", "src/compress/bzip2/bzip2_test.go", "src/compress/bzip2/huffman.go", "src/compress/bzip2/move_to_front.go", "src/compress/bzip2/testdata/Isaac.Newton-Opticks.txt.bz2", "src/compress/bzip2/testdata/e.txt.bz2", "src/compress/bzip2/testdata/fail-issue5747.bz2", "src/compress/bzip2/testdata/pass-random1.bin", "src/compress/bzip2/testdata/pass-random1.bz2", "src/compress/bzip2/testdata/pass-random2.bin",...
    Registered: Sun Dec 28 19:28:13 UTC 2025
    - Last Modified: Fri Aug 29 02:39:48 UTC 2025
    - 31.6K bytes
    - Viewed (0)
  4. guava/src/com/google/common/math/BigIntegerMath.java

         *
         * We start out with a double-precision approximation, which may be higher or lower than the
         * true value. Therefore, we perform at least one Newton iteration to get a guess that's
         * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point.
         */
        BigInteger sqrt0;
        int log2 = log2(x, FLOOR);
    Registered: Fri Dec 26 12:43:10 UTC 2025
    - Last Modified: Thu Aug 07 16:05:33 UTC 2025
    - 18.8K bytes
    - Viewed (0)
Back to top