Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 7 of 7 for GPUs (0.03 sec)

  1. WORKSPACE

    tf_workspace0()
    
    load(
        "@local_tsl//third_party/gpus/cuda/hermetic:cuda_json_init_repository.bzl",
        "cuda_json_init_repository",
    )
    
    cuda_json_init_repository()
    
    load(
        "@cuda_redist_json//:distributions.bzl",
        "CUDA_REDISTRIBUTIONS",
        "CUDNN_REDISTRIBUTIONS",
    )
    load(
        "@local_tsl//third_party/gpus/cuda/hermetic:cuda_redist_init_repositories.bzl",
        "cuda_redist_init_repositories",
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Fri Oct 11 16:49:28 UTC 2024
    - 3K bytes
    - Viewed (0)
  2. ci/official/envs/linux_x86_cuda_build

    TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --config release_gpu_linux"
    TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_cuda
    TFCI_BUILD_PIP_PACKAGE_ARGS="--repo_env=WHEEL_NAME=tensorflow"
    TFCI_DOCKER_ARGS="--gpus all"
    TFCI_LIB_SUFFIX="-gpu-linux-x86_64"
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 28 17:57:41 UTC 2024
    - 1.1K bytes
    - Viewed (0)
  3. ci/official/envs/linux_x86_cuda

    TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --config release_gpu_linux"
    TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_cuda
    TFCI_BUILD_PIP_PACKAGE_ARGS="--repo_env=WHEEL_NAME=tensorflow"
    TFCI_DOCKER_ARGS="--gpus all"
    TFCI_LIB_SUFFIX="-gpu-linux-x86_64"
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 14 23:45:36 UTC 2024
    - 1K bytes
    - Viewed (0)
  4. SECURITY.md

    ### Hardware attacks
    
    Physical GPUs or TPUs can also be the target of attacks. [Published
    research](https://scholar.google.com/scholar?q=gpu+side+channel) shows that it
    might be possible to use side channel attacks on the GPU to leak data from other
    running models or processes in the same system. GPUs can also have
    implementation bugs that might allow attackers to leave malicious code running
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Wed Oct 16 16:10:43 UTC 2024
    - 9.6K bytes
    - Viewed (0)
  5. configure.py

      Args:
        environ_cp: copy of the os.environ.
        var_name: string for name of environment variable, e.g. "TF_NEED_CUDA".
        query_item: string for feature related to the variable, e.g. "CUDA for
          Nvidia GPUs".
        enabled_by_default: boolean for default behavior.
        question: optional string for how to ask for user input.
        yes_reply: optional string for reply when feature is enabled.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Wed Oct 02 22:16:02 UTC 2024
    - 48.2K bytes
    - Viewed (0)
  6. .bazelrc

    # See https://developer.nvidia.com/cuda-gpus#compute
    # `compute_XY` enables PTX embedding in addition to SASS. PTX
    # is forward compatible beyond the current compute capability major
    # release while SASS is only forward compatible inside the current
    # major release. Example: sm_80 kernels can run on sm_89 GPUs but
    # not on sm_90 GPUs. compute_80 kernels though can also run on sm_90 GPUs.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 28 22:02:31 UTC 2024
    - 51.3K bytes
    - Viewed (0)
  7. RELEASE.md

            on Ampere based GPUs.TensorFloat-32, or TF32 for short, is a math mode
            for NVIDIA Ampere based GPUs which causes certain float32 ops, such as
            matrix multiplications and convolutions, to run much faster on Ampere
            GPUs but with reduced precision. This reduced precision has not been
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Tue Oct 22 14:33:53 UTC 2024
    - 735.3K bytes
    - Viewed (0)
Back to top