- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 151 for CPU (0.04 sec)
-
cmd/metrics-v3-system-cpu.go
sysCPUAvgIdleMD = NewGaugeMD(sysCPUAvgIdle, "Average CPU idle time") sysCPUAvgIOWaitMD = NewGaugeMD(sysCPUAvgIOWait, "Average CPU IOWait time") sysCPULoadMD = NewGaugeMD(sysCPULoad, "CPU load average 1min") sysCPULoadPercMD = NewGaugeMD(sysCPULoadPerc, "CPU load average 1min (percentage)") sysCPUNiceMD = NewGaugeMD(sysCPUNice, "CPU nice time") sysCPUStealMD = NewGaugeMD(sysCPUSteal, "CPU steal time")
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Thu Jun 20 17:55:03 UTC 2024 - 3K bytes - Viewed (0) -
docs/metrics/prometheus/list.md
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Mon Jul 29 18:48:51 UTC 2024 - 43.3K bytes - Viewed (0) -
.github/bot_config.yml
Therefore on any CPU that does not have these instruction sets, either CPU or GPU version of TF will fail to load. Apparently, your CPU model does not support AVX instruction sets. You can still use TensorFlow with the alternatives given below: * Try Google Colab to use TensorFlow.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Jul 15 05:00:54 UTC 2024 - 4K bytes - Viewed (0) -
cmd/metrics-resource.go
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Wed Jul 24 23:30:33 UTC 2024 - 17.2K bytes - Viewed (0) -
.bazelrc
# elinux_aarch64: Embedded Linux options for aarch64 (ARM64) CPU support. # elinux_armhf: Embedded Linux options for armhf (ARMv7) CPU support. # # Release build options (for all operating systems) # release_base: Common options for all builds on all operating systems. # release_cpu_linux: Toolchain and CUDA options for Linux CPU builds.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 28 22:02:31 UTC 2024 - 51.3K bytes - Viewed (0) -
tensorflow/BUILD
) config_setting( name = "arm", values = {"cpu": "arm"}, visibility = ["//visibility:public"], ) config_setting( name = "armeabi", values = {"cpu": "armeabi"}, visibility = ["//visibility:public"], ) config_setting( name = "armeabi-v7a", values = {"cpu": "armeabi-v7a"}, visibility = ["//visibility:public"], ) config_setting(
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Oct 16 05:28:35 UTC 2024 - 53.5K bytes - Viewed (0) -
cmd/metrics-realtime.go
} if types.Contains(madmin.MetricsCPU) { m.Aggregated.CPU = &madmin.CPUMetrics{ CollectedAt: UTCNow(), } cm, err := c.Times(false) if err != nil { m.Errors = append(m.Errors, fmt.Sprintf("%s: %v (cpuTimes)", byHostName, err.Error())) } else { // not collecting per-cpu stats, so there will be only one element if len(cm) == 1 { m.Aggregated.CPU.TimesStat = &cm[0] } else {
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Sat Jun 01 05:16:24 UTC 2024 - 6.3K bytes - Viewed (0) -
README.md
A smaller CPU-only package is also available: ``` $ pip install tensorflow-cpu ``` To update TensorFlow to the latest version, add `--upgrade` flag to the above commands. *Nightly binaries are available for testing using the [tf-nightly](https://pypi.python.org/pypi/tf-nightly) and [tf-nightly-cpu](https://pypi.python.org/pypi/tf-nightly-cpu) packages on PyPi.*
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Oct 05 15:00:10 UTC 2023 - 11.9K bytes - Viewed (0) -
cmd/update.go
cpuMap[cpus[i].PhysicalID] = struct{}{} coreMap[cpus[i].CoreID] = struct{}{} } cpu := cpus[0] uaAppend(" CPU ", fmt.Sprintf("(total_cpus:%d, total_cores:%d; vendor:%s; family:%s; model:%s; stepping:%d; model_name:%s)", len(cpuMap), len(coreMap), cpu.VendorID, cpu.Family, cpu.Model, cpu.Stepping, cpu.ModelName)) } uaAppend(")", "") return strings.Join(userAgentParts, "") }
Registered: Sun Nov 03 19:28:11 UTC 2024 - Last Modified: Fri May 24 23:05:23 UTC 2024 - 18.7K bytes - Viewed (0) -
docs/zh/docs/deployment/concepts.md
## 资源利用率 您的服务器是一个**资源**,您可以通过您的程序消耗或**利用**CPU 上的计算时间以及可用的 RAM 内存。 您想要消耗/利用多少系统资源? 您可能很容易认为“不多”,但实际上,您可能希望在不崩溃的情况下**尽可能多地消耗**。 如果您支付了 3 台服务器的费用,但只使用了它们的一点点 RAM 和 CPU,那么您可能**浪费金钱** 💸,并且可能 **浪费服务器电力** 🌎,等等。 在这种情况下,最好只拥有 2 台服务器并使用更高比例的资源(CPU、内存、磁盘、网络带宽等)。 另一方面,如果您有 2 台服务器,并且正在使用 **100% 的 CPU 和 RAM**,则在某些时候,一个进程会要求更多内存,并且服务器将不得不使用磁盘作为“内存” (这可能会慢数千倍),甚至**崩溃**。 或者一个进程可能需要执行一些计算,并且必须等到 CPU 再次空闲。
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Tue Aug 06 04:48:30 UTC 2024 - 16.2K bytes - Viewed (0)