- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 39 for shape_1 (0.1 sec)
-
tensorflow/c/c_api_test.cc
TEST_F(CApiAttributesTest, ShapeList) { const int64_t shape_1[] = {1, 3}; const int64_t shape_2[] = {2, 4, 6}; const int64_t* list[] = {&shape_1[0], &shape_2[0]}; const size_t list_size = TF_ARRAYSIZE(list); const int ndims[] = {TF_ARRAYSIZE(shape_1), TF_ARRAYSIZE(shape_2)}; const int total_ndims = 5; // ndims[0] + ndims[1] auto desc = init("list(shape)"); TF_SetAttrShapeList(desc, "v", list, ndims, list_size);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 16:27:48 UTC 2024 - 97K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib.h
ParallelTensor(const ParallelDevice& device, std::vector<TensorHandlePtr> tensors, absl::Span<const int64_t> shape, const TF_DataType dtype) : device_(device), tensors_(std::move(tensors)), shape_(std::vector<int64_t>(shape.begin(), shape.end())), dtype_(dtype) {} ParallelTensor(const ParallelDevice& device,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 13.1K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib.cc
new ParallelTensor(parallel_device, std::move(components), dtype)); } absl::Status ParallelTensor::Shape(const std::vector<int64_t>** shape) const { if (!shape_.has_value()) { TF_Status status; PartialTensorShape combined_shape; TF_RETURN_IF_ERROR(unwrap(tensors_[0].get())->Shape(&combined_shape)); for (const TensorHandlePtr& component : tensors_) { PartialTensorShape component_shape;
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 25.9K bytes - Viewed (0) -
tensorflow/c/eager/c_api_unified_experimental_graph.cc
std::vector<PartialTensorShape> shapes; shapes.reserve(num_values); for (int i = 0; i < num_values; ++i) { if (num_dims[i] < 0) { shapes.emplace_back(); } else { shapes.emplace_back(ArraySlice<int64_t>( reinterpret_cast<const int64_t*>(dims[i]), num_dims[i])); } } op_->node_builder.Attr(attr_name, shapes); return absl::OkStatus(); }
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 15.7K bytes - Viewed (0) -
tensorflow/c/c_api.cc
std::vector<PartialTensorShape> shapes; shapes.reserve(num_shapes); for (int i = 0; i < num_shapes; ++i) { if (num_dims[i] < 0) { shapes.emplace_back(); } else { shapes.emplace_back(ArraySlice<int64_t>( reinterpret_cast<const int64_t*>(dims[i]), num_dims[i])); } } desc->node_builder.Attr(attr_name, shapes); }
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 16:27:48 UTC 2024 - 102.3K bytes - Viewed (0) -
tensorflow/c/eager/immediate_execution_tensor_handle.h
// // -1 indicates an unknown axis length; this is unreachable for most standard // ImmediateExecutionTensorHandles, but comes up for example when computing // the shape of a parallel tensor with component shapes differing across // devices. virtual absl::Status Dim(int dim_index, int64_t* dim) const = 0; // Returns the device which created the handle.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 4.3K bytes - Viewed (0) -
RELEASE.md
* Tracing/timeline support for distributed runtime (no GPU profiler yet). * C API gives access to inferred shapes with `TF_GraphGetTensorNumDims` and `TF_GraphGetTensorShape`. * Shape functions for core ops have moved to C++ via `REGISTER_OP(...).SetShapeFn(...)`. Python shape inference RegisterShape calls use the C++ shape functions with `common_shapes.call_cpp_shape_fn`. A future release will remove `RegisterShape` from python.
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Oct 22 14:33:53 UTC 2024 - 735.3K bytes - Viewed (0) -
tensorflow/c/eager/abstract_tensor_handle.h
virtual absl::Status TensorHandleStatus() const; // Returns tensor shape. If tensor has unknown rank, shape remains untouched. virtual absl::Status Shape(tensorflow::PartialTensorShape* shape) const = 0; // Returns tensor (full) type. // While there is no immediate plan to deprecate dtype and shape in favor // of only using full type type information, this is a future possibility. //
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 3K bytes - Viewed (0) -
tensorflow/c/eager/c_api_debug.cc
std::vector<int64_t> shape; int rank = -1; *status = handle.NumDims(&rank); if (!status->ok()) { return shape; } shape.reserve(rank); for (int i = 0; i < rank; ++i) { int64_t dim; *status = handle.Dim(i, &dim); if (!status->ok()) { return shape; } shape.push_back(dim); } return shape; } } // namespace extern "C" {
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 2.5K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib_test.cc
ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); const std::vector<std::unique_ptr<ParallelTensor>>& handles = *outputs; const std::vector<int64_t>* shape; absl::Status s = handles[0]->Shape(&shape); ASSERT_TRUE(s.ok()); EXPECT_EQ(0, shape->size()); } TEST(PARALLEL_DEVICE_LIB, TestCancelOnError) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 15.6K bytes - Viewed (0)