Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 17 for dimensioner (0.08 sec)

  1. tensorflow/c/eager/immediate_execution_tensor_handle.h

    class ImmediateExecutionTensorHandle : public AbstractTensorHandle {
     public:
      // Returns number of dimensions.
      virtual absl::Status NumDims(int* num_dims) const = 0;
      // Returns number of elements across all dimensions.
      virtual absl::Status NumElements(int64_t* num_elements) const = 0;
      // Returns size of specified dimension
      //
      // -1 indicates an unknown axis length; this is unreachable for most standard
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 4.3K bytes
    - Viewed (0)
  2. tensorflow/c/eager/gradient_checker.cc

    void Range(vector<int32_t>* data, int32_t start, int32_t end,
               int32_t step = 1) {
      for (int32_t i = start; i < end; i += step) {
        (*data)[i] = i;
      }
    }
    
    // Fills out_dims with the dimensions of the given tensor.
    void GetDims(const TF_Tensor* t, int64_t* out_dims) {
      int num_dims = TF_NumDims(t);
      for (int i = 0; i < num_dims; i++) {
        out_dims[i] = TF_Dim(t, i);
      }
    }
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 7.3K bytes
    - Viewed (0)
  3. tensorflow/c/eager/parallel_device/parallel_device.cc

    void ParallelTensorDeallocator(void* data) {
      delete reinterpret_cast<ParallelTensor*>(data);
    }
    
    // Used as an argument to TFE_NewCustomDeviceTensorHandle, for computing the
    // number of dimensions of a parallel tensor.
    int ParallelTensorNumDims(void* data, TF_Status* status) {
      const std::vector<int64_t>* shape;
      absl::Status s = reinterpret_cast<ParallelTensor*>(data)->Shape(&shape);
      if (!s.ok()) {
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 18.3K bytes
    - Viewed (0)
  4. tensorflow/c/eager/gradients.cc

      if (num_dims > TensorShape::MaxDimensions()) {
        return errors::InvalidArgument("Value specified for `", attr_name, "` has ",
                                       num_dims,
                                       " dimensions which is over the limit of ",
                                       TensorShape::MaxDimensions(), ".");
      }
      TensorShapeProto proto;
      if (num_dims < 0) {
        proto.set_unknown_rank(true);
      } else {
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 19.7K bytes
    - Viewed (0)
  5. RELEASE.md

            control flow.
        *   Add `RaggedTensor.numpy()`.
        *   Update `RaggedTensor.__getitem__` to preserve uniform dimensions & allow
            indexing into uniform dimensions.
        *   Update `tf.expand_dims` to always insert the new dimension as a
            non-ragged dimension.
        *   Update `tf.embedding_lookup` to use `partition_strategy` and `max_norm`
            when `ids` is ragged.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Tue Oct 22 14:33:53 UTC 2024
    - 735.3K bytes
    - Viewed (0)
  6. android/guava/src/com/google/common/collect/ArrayTable.java

    import java.util.Map;
    import java.util.Set;
    import javax.annotation.CheckForNull;
    import org.checkerframework.checker.nullness.qual.Nullable;
    
    /**
     * Fixed-size {@link Table} implementation backed by a two-dimensional array.
     *
     * <p><b>Warning:</b> {@code ArrayTable} is rarely the {@link Table} implementation you want. First,
     * it requires that the complete universe of rows and columns be specified at construction time.
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Wed Oct 30 16:15:19 UTC 2024
    - 26.3K bytes
    - Viewed (0)
  7. tensorflow/c/eager/dlpack.cc

      bool valid = true;
      int64_t expected_stride = 1;
      for (int i = ndim - 1; i >= 0; --i) {
        // Empty tensors are always compact regardless of strides.
        if (shape_arr[i] == 0) return true;
        // Note that dimensions with size=1 can have any stride.
        if (shape_arr[i] != 1 && stride_arr[i] != expected_stride) {
          valid = false;
        }
        expected_stride *= shape_arr[i];
      }
      return valid;
    }
    }  // namespace
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 12.9K bytes
    - Viewed (0)
  8. src/main/webapp/js/admin/bootstrap.min.js.map

        $(this._element)\n        .removeClass(CLASS_NAME_COLLAPSING)\n        .addClass(`${CLASS_NAME_COLLAPSE} ${CLASS_NAME_SHOW}`)\n\n      this._element.style[dimension] = ''\n\n      this.setTransitioning(false)\n\n      $(this._element).trigger(EVENT_SHOWN)\n    }\n\n    const capitalizedDimension = dimension[0].toUpperCase() + dimension.slice(1)\n    const scrollSize = `scroll${capitalizedDimension}`\n    const transitionDuration = Util.getTransitionDurationFromElement(this._element)\n\n    $(this._element)\n...
    Registered: Thu Oct 31 13:40:30 UTC 2024
    - Last Modified: Sat Oct 26 01:49:09 UTC 2024
    - 180.9K bytes
    - Viewed (0)
  9. tensorflow/c/c_api_experimental.cc

      DCHECK(index >= 0 && index < shape_list->num_items);
      TF_ShapeAndType& shape = shape_list->items[index];
      DCHECK(shape.dims == nullptr) << "Shape at " << index << " is already set!";
      DCHECK(num_dims >= 0) << "Number of dimensions cannot be negative!";
      shape.num_dims = num_dims;
      shape.dims = new int64_t[num_dims];
      memcpy(shape.dims, dims, sizeof(int64_t) * num_dims);
    }
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 16:27:48 UTC 2024
    - 29.5K bytes
    - Viewed (0)
  10. tensorflow/c/c_api_test.cc

      // Fetch the shape and validate it is 2 by -1.
      num_dims = TF_GraphGetTensorNumDims(graph, feed_out_0, s);
      ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
      EXPECT_EQ(2, num_dims);
    
      // Resize the dimension vector appropriately.
      int64_t returned_dims[2];
      TF_GraphGetTensorShape(graph, feed_out_0, returned_dims, num_dims, s);
      ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
      EXPECT_EQ(dims[0], returned_dims[0]);
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 16:27:48 UTC 2024
    - 97K bytes
    - Viewed (0)
Back to top