Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 55 for cpui (0.04 sec)

  1. .bazelrc

    build:ios_arm64 --cpu=ios_arm64
    build:ios_arm64e --config=ios
    build:ios_arm64e --cpu=ios_arm64e
    build:ios_sim_arm64 --config=ios
    build:ios_sim_arm64 --cpu=ios_sim_arm64
    build:ios_x86_64 --config=ios
    build:ios_x86_64 --cpu=ios_x86_64
    build:ios_fat --config=ios
    build:ios_fat --ios_multi_cpus=armv7,arm64,i386,x86_64
    
    # Config to use a mostly-static build and disable modular op registration
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 28 22:02:31 UTC 2024
    - 51.3K bytes
    - Viewed (0)
  2. docs/pt/docs/deployment/concepts.md

    Quanto dos recursos do sistema você quer consumir/utilizar? Pode ser fácil pensar "não muito", mas, na realidade, você provavelmente vai querer consumir **o máximo possível sem travar**.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Fri Oct 04 11:04:50 UTC 2024
    - 19.7K bytes
    - Viewed (0)
  3. docs/en/docs/deployment/concepts.md

    On the other hand, if you have 2 servers and you are using **100% of their CPU and RAM**, at some point one process will ask for more memory, and the server will have to use the disk as "memory" (which can be thousands of times slower), or even **crash**. Or one process might need to do some computation and would have to wait until the CPU is free again.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Wed Sep 18 16:09:57 UTC 2024
    - 17.8K bytes
    - Viewed (0)
  4. docs/en/docs/deployment/server-workers.md

    ## Recap
    
    You can use multiple worker processes with the `--workers` CLI option with the `fastapi` or `uvicorn` commands to take advantage of **multi-core CPUs**, to run **multiple processes in parallel**.
    
    You could use these tools and ideas if you are setting up **your own deployment system** while taking care of the other deployment concepts yourself.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Wed Sep 18 16:09:57 UTC 2024
    - 8.7K bytes
    - Viewed (0)
  5. docs/pt/docs/deployment/server-workers.md

    ## Recapitular
    
    Você pode usar vários processos de trabalho com a opção CLI `--workers` com os comandos `fastapi` ou `uvicorn` para aproveitar as vantagens de **CPUs multi-core** e executar **vários processos em paralelo**.
    
    Você pode usar essas ferramentas e ideias se estiver configurando **seu próprio sistema de implantação** enquanto cuida dos outros conceitos de implantação.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Fri Sep 20 11:01:03 UTC 2024
    - 9K bytes
    - Viewed (0)
  6. RELEASE.md

            *   `tf.raw_ops.Bucketize` op on CPU.
            *   `tf.where` op for data types
                `tf.int32`/`tf.uint32`/`tf.int8`/`tf.uint8`/`tf.int64`.
            *   `tf.random.normal` op for output data type `tf.float32` on CPU.
            *   `tf.random.uniform` op for output data type `tf.float32` on CPU.
            *   `tf.random.categorical` op for output data type `tf.int64` on CPU.
    
    *   `tensorflow.experimental.tensorrt`:
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Tue Oct 22 14:33:53 UTC 2024
    - 735.3K bytes
    - Viewed (0)
  7. tensorflow/BUILD

    )
    
    config_setting(
        name = "arm",
        values = {"cpu": "arm"},
        visibility = ["//visibility:public"],
    )
    
    config_setting(
        name = "armeabi",
        values = {"cpu": "armeabi"},
        visibility = ["//visibility:public"],
    )
    
    config_setting(
        name = "armeabi-v7a",
        values = {"cpu": "armeabi-v7a"},
        visibility = ["//visibility:public"],
    )
    
    config_setting(
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Wed Oct 16 05:28:35 UTC 2024
    - 53.5K bytes
    - Viewed (0)
  8. ci/official/envs/linux_arm64

    TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --config release_arm64_linux"
    TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_arm64
    # Note: this is not set to "--cpu", because that changes the package name
    # to tensorflow_cpu. These ARM builds are supposed to have the name "tensorflow"
    # despite lacking Nvidia CUDA support.
    TFCI_BUILD_PIP_PACKAGE_ARGS="--repo_env=WHEEL_NAME=tensorflow"
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 14 23:45:36 UTC 2024
    - 1.5K bytes
    - Viewed (0)
  9. ci/official/utilities/rename_and_verify_wheels.sh

    if [[ "$TFCI_WHL_NUMPY_VERSION" == 1 ]]; then
      # Uninstall tf nightly wheel built with numpy1.
      "$python" -m pip uninstall -y tf_nightly_numpy1
      # Install tf nightly cpu wheel built with numpy2.x from PyPI in numpy1.x env.
      "$python" -m pip install tf-nightly-cpu
      if [[ "$TFCI_WHL_IMPORT_TEST_ENABLE" == "1" ]]; then
        "$python" -c 'import tensorflow as tf; t1=tf.constant([1,2,3,4]); t2=tf.constant([5,6,7,8]); print(tf.add(t1,t2).shape)'
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Wed Oct 02 21:18:17 UTC 2024
    - 4.3K bytes
    - Viewed (0)
  10. ci/official/envs/linux_x86

    TFCI_DOCKER_PULL_ENABLE=1
    TFCI_DOCKER_REBUILD_ARGS="--build-arg PYTHON_VERSION=python$TFCI_PYTHON_VERSION --target=devel tensorflow/tools/tf_sig_build_dockerfiles"
    TFCI_INDEX_HTML_ENABLE=1
    TFCI_LIB_SUFFIX="-cpu-linux-x86_64"
    TFCI_OUTPUT_DIR=build_output
    TFCI_WHL_AUDIT_ENABLE=1
    TFCI_WHL_AUDIT_PLAT=manylinux2014_x86_64
    TFCI_WHL_BAZEL_TEST_ENABLE=1
    TFCI_WHL_SIZE_LIMIT=240M
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 14 23:45:36 UTC 2024
    - 1.4K bytes
    - Viewed (0)
Back to top