Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 59 for Vector$ (0.06 sec)

  1. tensorflow/c/eager/c_api_debug.cc

    #include "tensorflow/core/platform/status.h"
    
    using tensorflow::string;
    
    namespace {
    
    std::vector<int64_t> TensorShapeAsVector(const tensorflow::TensorHandle& handle,
                                             absl::Status* status) {
      std::vector<int64_t> shape;
      int rank = -1;
      *status = handle.NumDims(&rank);
      if (!status->ok()) {
        return shape;
      }
      shape.reserve(rank);
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 2.5K bytes
    - Viewed (0)
  2. tensorflow/c/eager/parallel_device/parallel_device_lib.cc

      }
    }
    
    absl::optional<std::vector<std::unique_ptr<ParallelTensor>>>
    ParallelDevice::Join(
        const std::vector<PartialTensorShape>& expected_output_shapes,
        TF_Status* status) const {
      absl::optional<std::vector<std::unique_ptr<ParallelTensor>>> result;
      // Compute per-device per-output tensors
      std::vector<std::vector<TensorHandlePtr>> per_device_output_tensors;
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 25.9K bytes
    - Viewed (0)
  3. tensorflow/c/eager/parallel_device/parallel_device_lib.h

      absl::Status Shape(const std::vector<int64_t>** shape) const;
      TF_DataType dtype() const { return dtype_; }
    
      // Sets its output argument to a summary of the values of this tensor on every
      // component device.
      absl::Status SummarizeValue(std::string& summary);
    
      std::vector<TensorHandlePtr> release_tensors() { return std::move(tensors_); }
    
      std::vector<TFE_TensorHandle*> tensors() const {
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 13.1K bytes
    - Viewed (0)
  4. tensorflow/c/eager/parallel_device/parallel_device_lib_test.cc

          parallel_device.Execute(context.get(), std::vector<ParallelTensor*>(),
                                  "VarHandleOp", TFE_OpGetAttrs(handle_op.get()),
                                  /*expected_max_outputs=*/1, status.get());
      ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get());
      const std::vector<std::unique_ptr<ParallelTensor>>& handles = *outputs;
      std::vector<ParallelTensor*> handle_inputs;
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 15.6K bytes
    - Viewed (0)
  5. tensorflow/c/eager/gradient_checker.cc

      int num_elems = TF_TensorElementCount(theta_tensor);
      vector<float> theta_data(num_elems);
      memcpy(theta_data.data(), TF_TensorData(theta_tensor),
             TF_TensorByteSize(theta_tensor));
    
      // Initialize space for the numerical gradient.
      vector<float> dtheta_approx(num_elems);
    
      // Get theta shape and store in theta_dims.
      int num_dims = TF_NumDims(theta_tensor);
      vector<int64_t> theta_dims(num_dims);
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 7.3K bytes
    - Viewed (0)
  6. tensorflow/c/c_api_function.cc

      // Process inputs.
      std::vector<tensorflow::OutputTensor> input_tensors;
      std::unordered_map<const Node*, std::vector<int>> input_nodes;
      status->status = tensorflow::ProcessInputs(fn_body, fn_name, ninputs, inputs,
                                                 &input_tensors, &input_nodes);
      if (TF_GetCode(status) != TF_OK) return nullptr;
    
      // Process outputs.
      std::vector<tensorflow::OutputTensor> output_tensors;
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 16:27:48 UTC 2024
    - 13.7K bytes
    - Viewed (0)
  7. tensorflow/c/c_api_experimental.cc

      if (!status->status.ok()) return;
    
      // Initialize a input_tensor vector with `nullptr` values.
      std::vector<const Tensor*> input_tensors_vector(num_inputs, nullptr);
      // A vector to keep track of newly created `tf::Tensor` objects.
      std::vector<Tensor> all_input_tensors;
      // Update the vector with information from `input_tensors` if provided.
      if (input_tensors != nullptr) {
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 16:27:48 UTC 2024
    - 29.5K bytes
    - Viewed (0)
  8. tensorflow/c/eager/parallel_device/parallel_device.cc

    };
    
    absl::optional<std::vector<MaybeParallelTensorOwned>> ExecuteWithSpecialOps(
        const ParallelDevice& parallel_device,
        const std::string& parallel_device_name, TFE_Context* context,
        std::vector<MaybeParallelTensorUnowned> inputs, const char* operation_name,
        const TFE_OpAttrs* attributes, int expected_max_outputs,
        TF_Status* status) {
      absl::optional<std::vector<MaybeParallelTensorOwned>> result;
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 18.3K bytes
    - Viewed (0)
  9. tensorflow/c/eager/immediate_execution_context.h

      virtual bool UsesTFRT() = 0;
    
      // List attributes of available devices
      virtual void ListDevices(std::vector<DeviceAttributes>* devices) = 0;
    
      // Add `devices` into context's device manager. Context's device manager
      // will take ownership and maintain devices' lifetime.
      virtual absl::Status AddDevices(
          std::vector<std::unique_ptr<Device>> devices) = 0;
    
      // Block until all pending nodes are finished.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 12.3K bytes
    - Viewed (0)
  10. tensorflow/c/eager/gradients.cc

                               const string& op_name) {
      std::vector<int64_t> input_ids(inputs.size());
      std::vector<tensorflow::DataType> input_dtypes(inputs.size());
      for (int i = 0; i < inputs.size(); i++) {
        input_ids[i] = ToId(inputs[i]);
        input_dtypes[i] = inputs[i]->DataType();
      }
      std::vector<TapeTensor> tape_tensors;
      tape_tensors.reserve(outputs.size());
      for (auto t : outputs) {
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 19.7K bytes
    - Viewed (0)
Back to top