- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 228 for Dict (0.02 sec)
-
docs/em/docs/tutorial/extra-models.md
🖼 🔛 👥 🤚 `user_dict` ⚪️➡️ `user_in.dict()`, 👉 📟: ```Python user_dict = user_in.dict() UserInDB(**user_dict) ``` 🔜 🌓: ```Python UserInDB(**user_in.dict()) ``` ...↩️ `user_in.dict()` `dict`, & ⤴️ 👥 ⚒ 🐍 "🎁" ⚫️ 🚶♀️ ⚫️ `UserInDB` 🔠 ⏮️ `**`. , 👥 🤚 Pydantic 🏷 ⚪️➡️ 💽 ➕1️⃣ Pydantic 🏷. #### 🎁 `dict` & ➕ 🇨🇻
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 6.8K bytes - Viewed (0) -
docs/zh/docs/tutorial/extra-models.md
#### 用其它模型中的内容生成 Pydantic 模型 上例中 ,从 `user_in.dict()` 中得到了 `user_dict`,下面的代码: ```Python user_dict = user_in.dict() UserInDB(**user_dict) ``` 等效于: ```Python UserInDB(**user_in.dict()) ``` ……因为 `user_in.dict()` 是字典,在传递给 `UserInDB` 时,把 `**` 加在 `user_in.dict()` 前,可以让 Python 进行**解包**。 这样,就可以用其它 Pydantic 模型中的数据生成 Pydantic 模型。 #### 解包 `dict` 和更多关键字
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 6.6K bytes - Viewed (0) -
docs/en/docs/tutorial/extra-models.md
So, if we create a Pydantic object `user_in` like: ```Python user_in = UserIn(username="john", password="secret", email="******@****.***") ``` and then we call: ```Python user_dict = user_in.dict() ``` we now have a `dict` with the data in the variable `user_dict` (it's a `dict` instead of a Pydantic model object). And if we call: ```Python
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 7.7K bytes - Viewed (0) -
docs/de/docs/tutorial/extra-models.md
Pydantic-Modelle haben eine `.dict()`-Methode, die ein `dict` mit den Daten des Modells zurückgibt. Wenn wir also ein Pydantic-Objekt `user_in` erstellen, etwa so: ```Python user_in = UserIn(username="john", password="secret", email="******@****.***") ``` und wir rufen seine `.dict()`-Methode auf: ```Python user_dict = user_in.dict() ```
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 8.7K bytes - Viewed (0) -
docs/ru/docs/tutorial/extra-models.md
#### Pydantic-модель из содержимого другой модели Как в примере выше мы получили `user_dict` из `user_in.dict()`, этот код: ```Python user_dict = user_in.dict() UserInDB(**user_dict) ``` будет равнозначен такому: ```Python UserInDB(**user_in.dict()) ``` ...потому что `user_in.dict()` - это `dict`, и затем мы указываем, чтобы Python его "распаковал", когда передаём его в `UserInDB` и ставим перед ним `**`.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 11.5K bytes - Viewed (0) -
docs/pt/docs/tutorial/extra-models.md
Como no exemplo acima, obtivemos o `user_dict` a partir do `user_in.dict()`, este código: ```Python user_dict = user_in.dict() UserInDB(**user_dict) ``` seria equivalente a: ```Python UserInDB(**user_in.dict()) ``` ...porque `user_in.dict()` é um `dict`, e depois fazemos o Python "desembrulhá-lo" passando-o para UserInDB precedido por `**`.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 7.8K bytes - Viewed (0) -
docs/ru/docs/python-types.md
#### `Dict` Чтобы определить `dict`, вы передаёте 2 параметра типов, разделённых запятыми. Первый параметр типа предназначен для ключей `dict`. Второй параметр типа предназначен для значений `dict`: ```Python hl_lines="1 4" {!../../docs_src/python_types/tutorial008.py!} ``` Это означает: * Переменная `prices` является `dict`:
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 14.6K bytes - Viewed (0) -
docs/em/docs/tutorial/encoder.md
👆 💪 ⚙️ `jsonable_encoder` 👈. ⚫️ 📨 🎚, 💖 Pydantic 🏷, & 📨 🎻 🔗 ⏬: //// tab | 🐍 3️⃣.6️⃣ & 🔛 ```Python hl_lines="5 22" {!> ../../docs_src/encoder/tutorial001.py!} ``` //// //// tab | 🐍 3️⃣.1️⃣0️⃣ & 🔛 ```Python hl_lines="4 21" {!> ../../docs_src/encoder/tutorial001_py310.py!} ``` //// 👉 🖼, ⚫️ 🔜 🗜 Pydantic 🏷 `dict`, & `datetime` `str`.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 1.5K bytes - Viewed (0) -
docs/en/docs/tutorial/encoder.md
The same way, this database wouldn't receive a Pydantic model (an object with attributes), only a `dict`. You can use `jsonable_encoder` for that. It receives an object, like a Pydantic model, and returns a JSON compatible version: {* ../../docs_src/encoder/tutorial001_py310.py hl[4,21] *} In this example, it would convert the Pydantic model to a `dict`, and the `datetime` to a `str`.
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 27 23:31:16 UTC 2024 - 1.6K bytes - Viewed (0) -
docs/pt/docs/tutorial/encoder.md
# Codificador Compatível com JSON Existem alguns casos em que você pode precisar converter um tipo de dados (como um modelo Pydantic) para algo compatível com JSON (como um `dict`, `list`, etc). Por exemplo, se você precisar armazená-lo em um banco de dados. Para isso, **FastAPI** fornece uma função `jsonable_encoder()`. ## Usando a função `jsonable_encoder`
Registered: Sun Nov 03 07:19:11 UTC 2024 - Last Modified: Sun Oct 06 20:36:54 UTC 2024 - 1.9K bytes - Viewed (0)