Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 4 of 4 for DISTINCT (0.07 sec)

  1. statement.go

    		Model:                stmt.Model,
    		Unscoped:             stmt.Unscoped,
    		Dest:                 stmt.Dest,
    		ReflectValue:         stmt.ReflectValue,
    		Clauses:              map[string]clause.Clause{},
    		Distinct:             stmt.Distinct,
    		Selects:              stmt.Selects,
    		Omits:                stmt.Omits,
    		ColumnMapping:        stmt.ColumnMapping,
    		Preloads:             map[string][]interface{}{},
    Registered: Sun Sep 07 09:35:13 UTC 2025
    - Last Modified: Thu Sep 04 13:13:16 UTC 2025
    - 20.8K bytes
    - Viewed (0)
  2. generics.go

    func (c chainG[T]) MapColumns(m map[string]string) ChainInterface[T] {
    	return c.with(func(db *DB) *DB {
    		return db.MapColumns(m)
    	})
    }
    
    func (c chainG[T]) Distinct(args ...interface{}) ChainInterface[T] {
    	return c.with(func(db *DB) *DB {
    		return db.Distinct(args...)
    	})
    }
    
    func (c chainG[T]) Group(name string) ChainInterface[T] {
    	return c.with(func(db *DB) *DB {
    		return db.Group(name)
    	})
    }
    
    Registered: Sun Sep 07 09:35:13 UTC 2025
    - Last Modified: Thu Sep 04 13:13:16 UTC 2025
    - 15.5K bytes
    - Viewed (0)
  3. tests/generics_test.go

    		t.Fatalf("CreateInBatches failed: %v", err)
    	}
    
    	results, err := gorm.G[User](DB).Where("name like ?", "GenericsDistinct%").Distinct("name").Find(ctx)
    	if err != nil {
    		t.Fatalf("Distinct Find failed: %v", err)
    	}
    
    	if len(results) != 2 {
    		t.Errorf("expected 2 distinct names, got %d", len(results))
    	}
    
    	var names []string
    	for _, u := range results {
    		names = append(names, u.Name)
    	}
    Registered: Sun Sep 07 09:35:13 UTC 2025
    - Last Modified: Thu Sep 04 13:13:16 UTC 2025
    - 28K bytes
    - Viewed (0)
  4. android/guava/src/com/google/common/hash/BloomFilter.java

       */
      public double expectedFpp() {
        return Math.pow((double) bits.bitCount() / bitSize(), numHashFunctions);
      }
    
      /**
       * Returns an estimate for the total number of distinct elements that have been added to this
       * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of
       * {@code expectedInsertions} that was used when constructing the filter.
       *
    Registered: Fri Sep 05 12:43:10 UTC 2025
    - Last Modified: Sun Aug 31 13:15:26 UTC 2025
    - 26.9K bytes
    - Viewed (0)
Back to top