Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 5 of 5 for parallelization (0.09 sec)

  1. .teamcity/src/main/kotlin/model/FunctionalTestBucketGenerator.kt

                { largeElement, factor ->
                    List(factor) { SmallSubprojectBucket(largeElement.subProject, parallelization(factor)) }
                },
                { list ->
                    SmallSubprojectBucket(list.map { it.subProject }, parallelization(1))
                },
                testCoverage.expectedBucketNumber,
                MAX_PROJECT_NUMBER_IN_BUCKET
            )
    Registered: Wed Nov 06 11:36:14 UTC 2024
    - Last Modified: Thu Aug 29 11:04:49 UTC 2024
    - 8.5K bytes
    - Viewed (0)
  2. .teamcity/src/main/kotlin/configurations/FunctionalTest.kt

                    TeamCityParallelTests::class.simpleName -> TeamCityParallelTests(methodJsonObject.getIntValue("numberOfBatches"))
                    else -> throw IllegalArgumentException("Unknown parallelization method")
                }
            }
        }
    }
    
    class FunctionalTest(
        model: CIBuildModel,
        id: String,
        name: String,
        description: String,
        val testCoverage: TestCoverage,
    Registered: Wed Nov 06 11:36:14 UTC 2024
    - Last Modified: Wed Sep 25 06:14:43 UTC 2024
    - 4.5K bytes
    - Viewed (0)
  3. CONTRIBUTING.md

    > even if you have Gradle or Develocity build caching enabled for the project.
    > The Gradle Build Tool repository is massive, and it will take ages to build on
    > a local machine without necessary parallelization and caching.
    > The full test suites are executed on the CI instance for multiple configurations,
    > and you can rely on it after doing initial sanity check and targeted local testing.
    
    ### Submitting Your Change
    
    Registered: Wed Nov 06 11:36:14 UTC 2024
    - Last Modified: Tue Nov 05 15:15:33 UTC 2024
    - 15.6K bytes
    - Viewed (0)
  4. docs/en/docs/deployment/docker.md

    normally have **just one process** (e.g. a Uvicorn process running your FastAPI application). They would all be **identical containers**, running the same thing, but each with its own process, memory, etc. That way you would take advantage of **parallelization** in **different cores** of the CPU, or even in **different machines**.
    
    And the distributed container system with the **load balancer** would **distribute the requests** to each one of the containers with your app **in turns**. So,...
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Wed Sep 18 16:09:57 UTC 2024
    - 28.5K bytes
    - Viewed (0)
  5. docs/zh/docs/deployment/docker.md

    运行你的应用程序的每个容器通常**只有一个进程**(例如,运行 FastAPI 应用程序的 Uvicorn 进程)。 它们都是**相同的容器**,运行相同的东西,但每个容器都有自己的进程、内存等。这样你就可以在 CPU 的**不同核心**, 甚至在**不同的机器**充分利用**并行化(parallelization)**。
    
    具有**负载均衡器**的分布式容器系统将**将请求轮流分配**给你的应用程序的每个容器。 因此,每个请求都可以由运行你的应用程序的多个**复制容器**之一来处理。
    
    通常,这个**负载均衡器**能够处理发送到集群中的*其他*应用程序的请求(例如发送到不同的域,或在不同的 URL 路径前缀下),并正确地将该通信传输到在集群中运行的*其他*应用程序的对应容器。
    
    
    
    
    
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Mon Aug 12 21:47:53 UTC 2024
    - 31.2K bytes
    - Viewed (0)
Back to top