- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 127 for converters (0.1 sec)
-
src/main/java/org/codelibs/fess/suggest/converter/ReadingConverterChain.java
/** * Adds a converter to the chain. * @param converter The converter to add. */ public void addConverter(final ReadingConverter converter) { converters.add(converter); }Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Fri Jul 04 14:00:23 UTC 2025 - 2.5K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/suggest/util/SuggestUtil.java
import org.apache.lucene.search.TermQuery; import org.codelibs.core.CoreLibConstants; import org.codelibs.fess.suggest.converter.AnalyzerConverter; import org.codelibs.fess.suggest.converter.KatakanaToAlphabetConverter; import org.codelibs.fess.suggest.converter.ReadingConverter; import org.codelibs.fess.suggest.converter.ReadingConverterChain; import org.codelibs.fess.suggest.entity.SuggestItem;
Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Mon Sep 01 13:33:03 UTC 2025 - 17.4K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/suggest/index/contents/ContentsParser.java
* @param langFieldName The name of the field that contains language information. * @param readingConverter The converter to use for reading fields. * @param contentsReadingConverter The converter to use for reading content fields. * @param normalizer The normalizer to use for normalizing field values. * @param analyzer The analyzer to use for analyzing field values.Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Sat Mar 15 06:51:20 UTC 2025 - 4.1K bytes - Viewed (0) -
README.md
- **Multi-language Support**: Built-in support for Japanese text processing with Kuromoji analyzer - **Popular Words Analytics**: Track and analyze frequently searched terms - **Flexible Text Processing**: Configurable converters and normalizers for text transformation - **OpenSearch Integration**: Seamless integration with OpenSearch/Elasticsearch clusters - **Asynchronous Operations**: Non-blocking suggestion requests with callback support
Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Sun Aug 31 03:31:14 UTC 2025 - 12.1K bytes - Viewed (1) -
src/test/java/org/codelibs/fess/suggest/converter/ReadingConverterTest.java
// Test that multiple converter instances work independently ReadingConverter converter1 = new TestReadingConverter(); ReadingConverter converter2 = new TestReadingConverter(); converter1.init(); converter2.init(); String text = "test"; String field = "content"; List<String> readings1 = converter1.convert(text, field, "en");Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Mon Sep 01 13:33:03 UTC 2025 - 13.5K bytes - Viewed (0) -
src/test/java/org/codelibs/fess/suggest/converter/AnalyzerConverterTest.java
List<String> results = converter.convert(text, field, "en"); assertNotNull(results); } @Test public void testMultipleConverterInstances() throws IOException { // Test that multiple converter instances work independently AnalyzerConverter converter1 = new AnalyzerConverter(client, settings); AnalyzerConverter converter2 = new AnalyzerConverter(client, settings);Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Mon Sep 01 13:33:03 UTC 2025 - 12.5K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/suggest/converter/ReadingConverter.java
return 10; } /** * Initializes the converter. * * @throws IOException if an I/O error occurs during initialization. */ void init() throws IOException; /** * Converts the given text into a list of readings based on the specified field and languages. * * @param text the text to be converted. * @param field the field to be used for conversion.Registered: Fri Sep 19 09:08:11 UTC 2025 - Last Modified: Sat Mar 15 06:51:20 UTC 2025 - 1.6K bytes - Viewed (0) -
docs/fr/docs/advanced/response-directly.md
Par exemple, vous ne pouvez pas mettre un modèle Pydantic dans une `JSONResponse` sans d'abord le convertir en un `dict` avec tous les types de données (comme `datetime`, `UUID`, etc.) convertis en types compatibles avec JSON. Pour ces cas, vous pouvez spécifier un appel à `jsonable_encoder` pour convertir vos données avant de les passer à une réponse : {* ../../docs_src/response_directly/tutorial001.py hl[6:7,21:22] *}Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sat Nov 09 16:39:20 UTC 2024 - 3.6K bytes - Viewed (0) -
RELEASE.md
* `parallel_for.pfor`: add converters for Softmax, LogSoftmax, IsNaN, All, Any, and MatrixSetDiag. * `parallel_for`: add converters for LowerTriangularSolve and Cholesky. * `parallel_for`: add converters for `LogMatrixDeterminant` and `MatrixBandPart`. * `parallel_for`: Add converter for `MatrixDiag`. * `parallel_for`: Add converters for `OneHot`, `LowerBound`, `UpperBound`.Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Aug 18 20:54:38 UTC 2025 - 740K bytes - Viewed (3) -
docs/pt/docs/tutorial/encoder.md
# Codificador Compatível com JSON Existem alguns casos em que você pode precisar converter um tipo de dados (como um modelo Pydantic) para algo compatível com JSON (como um `dict`, `list`, etc). Por exemplo, se você precisar armazená-lo em um banco de dados. Para isso, **FastAPI** fornece uma função `jsonable_encoder()`. ## Usando a função `jsonable_encoder`
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 1.8K bytes - Viewed (0)