- Sort Score
- Result 10 results
- Languages All
Results 1 - 6 of 6 for TensorHandlePtr (0.16 sec)
-
tensorflow/c/eager/parallel_device/parallel_device_test.cc
// Create a tensor on the first parallel device TensorHandlePtr value_one(FloatTensorHandle(1., status.get())); TensorHandlePtr value_two(FloatTensorHandle(2., status.get())); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); std::array<TFE_TensorHandle*, 2> components{value_one.get(), value_two.get()}; TensorHandlePtr first_combined_value = CreatePerDeviceValues(
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Aug 06 23:56:17 UTC 2024 - 29.4K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib.h
const ParallelDevice& parallel_device, std::vector<TensorHandlePtr> components, TF_Status* status); // Uses the provided shape without additional checks, which avoids blocking // when ParallelTensor::Shape is called. static std::unique_ptr<ParallelTensor> FromTensorHandles( const ParallelDevice& parallel_device, std::vector<TensorHandlePtr> components, absl::Span<const int64_t> shape, TF_Status* status);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 13.1K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_remote_test.cc
status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TensorHandlePtr value_one(FloatTensorHandle(3., status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TensorHandlePtr value_two(FloatTensorHandle(-2., status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get());
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Jul 10 07:18:05 UTC 2024 - 6.8K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib.cc
cancellation_manager_ = &cancellation_manager; execution_state_ = ExecutionState::kReadyToExecute; } start_execute_.notify_one(); } std::vector<TensorHandlePtr> DeviceThread::Join(TF_Status* status) { std::vector<TensorHandlePtr> result; { tensorflow::mutex_lock l(execution_mutex_); while (execution_state_ != ExecutionState::kHasResult) { finished_execute_.wait(l); }
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 25.9K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device.cc
return; } for (int i = 0; i < typed_outputs.size(); ++i) { MaybeParallelTensorOwned typed_output(std::move(typed_outputs[i])); if (absl::holds_alternative<TensorHandlePtr>(typed_output)) { outputs[i] = absl::get<TensorHandlePtr>(typed_output).release(); } else { outputs[i] = ParallelTensorToTensorHandle( named_device->name(), context,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 18.3K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib_test.cc
TensorHandlePtr two_vector = VectorFloatTensorHandle({3., 4.}, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TensorHandlePtr three_vector = VectorFloatTensorHandle({5., 6., 7.}, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); std::vector<TensorHandlePtr> vector_handles; vector_handles.reserve(2);
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 15.6K bytes - Viewed (0)