Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 51 for std (0.01 sec)

  1. tensorflow/c/eager/parallel_device/parallel_device_remote_test.cc

    namespace tensorflow {
    namespace parallel_device {
    
    TEST(PARALLEL_DEVICE, TestRemoteBasic) {
      std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts(
          TFE_NewContextOptions(), TFE_DeleteContextOptions);
      std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
          TF_NewStatus(), TF_DeleteStatus);
      std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context(
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Wed Jul 10 07:18:05 UTC 2024
    - 6.8K bytes
    - Viewed (0)
  2. tensorflow/c/eager/parallel_device/parallel_device_lib.h

      absl::Status Shape(const std::vector<int64_t>** shape) const;
      TF_DataType dtype() const { return dtype_; }
    
      // Sets its output argument to a summary of the values of this tensor on every
      // component device.
      absl::Status SummarizeValue(std::string& summary);
    
      std::vector<TensorHandlePtr> release_tensors() { return std::move(tensors_); }
    
      std::vector<TFE_TensorHandle*> tensors() const {
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 13.1K bytes
    - Viewed (0)
  3. tensorflow/c/eager/gradients_test.cc

    namespace gradients {
    namespace internal {
    namespace {
    using std::vector;
    using tensorflow::TF_StatusPtr;
    using tracing::TracingOperation;
    
    class CppGradients
        : public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> {
     protected:
      void SetUp() override {
        TF_StatusPtr status(TF_NewStatus());
        TF_SetTracingImplementation(std::get<0>(GetParam()), status.get());
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 7K bytes
    - Viewed (0)
  4. tensorflow/c/eager/parallel_device/parallel_device_test.cc

    namespace parallel_device {
    
    using ::testing::HasSubstr;
    
    TEST(PARALLEL_DEVICE, TestBasicCPU) {
      std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
          TF_NewStatus(), TF_DeleteStatus);
      std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts(
          TFE_NewContextOptions(), TFE_DeleteContextOptions);
      std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config(
          TF_CreateConfig(
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Tue Aug 06 23:56:17 UTC 2024
    - 29.4K bytes
    - Viewed (0)
  5. tensorflow/c/eager/parallel_device/parallel_device.cc

     public:
      NamedParallelDevice(const std::string& name,
                          std::unique_ptr<ParallelDevice> parallel_device)
          : device_name_(name), parallel_device_(std::move(parallel_device)) {}
      const std::string& name() const { return device_name_; }
      const ParallelDevice& device() const { return *parallel_device_; }
    
     private:
      std::string device_name_;
      std::unique_ptr<ParallelDevice> parallel_device_;
    };
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 18.3K bytes
    - Viewed (0)
  6. manifests/addons/dashboards/lib/lib-query.libsonnet

        local prom_labels = std.join(',',
          std.map(
            function(k)
              if std.startsWith(labels[k], "!~") then
                '%s!~"%s"'%[ k, std.lstripChars(labels[k], '!~')]
              else if std.startsWith(labels[k], "~") then
                '%s=~"%s"'%[ k, std.lstripChars(labels[k], '~')]
              else if std.startsWith(labels[k], "!") then
                '%s!="%s"'%[ k, std.lstripChars(labels[k], '!')]
              else 
    Registered: Wed Nov 06 22:53:10 UTC 2024
    - Last Modified: Fri Jul 26 23:54:32 UTC 2024
    - 1K bytes
    - Viewed (0)
  7. tensorflow/c/c_api_function.cc

      // Process inputs.
      std::vector<tensorflow::OutputTensor> input_tensors;
      std::unordered_map<const Node*, std::vector<int>> input_nodes;
      status->status = tensorflow::ProcessInputs(fn_body, fn_name, ninputs, inputs,
                                                 &input_tensors, &input_nodes);
      if (TF_GetCode(status) != TF_OK) return nullptr;
    
      // Process outputs.
      std::vector<tensorflow::OutputTensor> output_tensors;
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 16:27:48 UTC 2024
    - 13.7K bytes
    - Viewed (0)
  8. tensorflow/c/eager/parallel_device/parallel_device_lib_test.cc

      vector_handles.push_back(std::move(two_vector));
      vector_handles.push_back(std::move(three_vector));
      std::unique_ptr<ParallelTensor> unknown_length_vector =
          ParallelTensor::FromTensorHandles(
              parallel_device, std::move(vector_handles), status.get());
      ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get());
      const std::vector<int64_t>* shape;
      TF_ASSERT_OK(unknown_length_vector->Shape(&shape));
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 15.6K bytes
    - Viewed (0)
  9. tensorflow/c/eager/parallel_device/parallel_device_lib.cc

      }
    }
    
    absl::optional<std::vector<std::unique_ptr<ParallelTensor>>>
    ParallelDevice::Join(
        const std::vector<PartialTensorShape>& expected_output_shapes,
        TF_Status* status) const {
      absl::optional<std::vector<std::unique_ptr<ParallelTensor>>> result;
      // Compute per-device per-output tensors
      std::vector<std::vector<TensorHandlePtr>> per_device_output_tensors;
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 25.9K bytes
    - Viewed (0)
  10. manifests/addons/dashboards/lib/lib-grid.libsonnet

        local rowPanels =
          std.filter(
            function(p) p.type == 'row',
            grouped
          );
    
        local CalculateXforPanel(index, panel) =
          local panelsPerRow = std.floor(gridWidth / panel.gridPos.w);
          local col = std.mod(index, panelsPerRow);
          panel + { gridPos+: { x: panel.gridPos.w * col } };
    
        local panelsBeforeRowsWithX = std.mapWithIndex(CalculateXforPanel, panelsBeforeRows);
    
    Registered: Wed Nov 06 22:53:10 UTC 2024
    - Last Modified: Tue Jun 04 18:05:06 UTC 2024
    - 2.3K bytes
    - Viewed (0)
Back to top