Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 262 for shape (0.75 sec)

  1. tensorflow/c/c_api.cc

      std::vector<PartialTensorShape> shapes;
      shapes.reserve(num_shapes);
      for (int i = 0; i < num_shapes; ++i) {
        if (num_dims[i] < 0) {
          shapes.emplace_back();
        } else {
          shapes.emplace_back(absl::Span<const int64_t>(
              reinterpret_cast<const int64_t*>(dims[i]), num_dims[i]));
        }
      }
      desc->node_builder.Attr(attr_name, shapes);
    }
    
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Sat Oct 04 05:55:32 UTC 2025
    - 102.4K bytes
    - Viewed (0)
  2. tensorflow/c/c_api_experimental.cc

        ShapeHandle shape_handle = c.output(i);
        TF_ShapeAndType& shape = output_shapes_result->items[i];
        shape.num_dims = c.Rank(shape_handle);
        if (shape.num_dims == InferenceContext::kUnknownRank) {
          shape.dims = nullptr;
          continue;
        }
        shape.dims = new int64_t[shape.num_dims];
        for (size_t j = 0; j < shape.num_dims; ++j) {
          shape.dims[j] = c.Value(c.Dim(shape_handle, j));
        }
      }
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Sat Oct 04 05:55:32 UTC 2025
    - 29.4K bytes
    - Viewed (0)
  3. tensorflow/c/checkpoint_reader.cc

      if (reader_ != nullptr) {
        status = reader_->GetTensor(name, out_tensor);
      } else {
        tensorflow::DataType dtype;
        tensorflow::TensorShape shape;
        status = v2_reader_->LookupDtypeAndShape(name, &dtype, &shape);
        if (status.ok()) {
          out_tensor->reset(new Tensor(dtype, shape));
          status = v2_reader_->Lookup(name, out_tensor->get());
          if (!status.ok()) out_tensor->reset();
        }
      }
      if (!status.ok()) {
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Sat Nov 08 06:24:11 UTC 2025
    - 5.4K bytes
    - Viewed (0)
  4. tensorflow/c/c_api_test.cc

    }
    
    TEST(CAPI, ShapeInferenceError) {
      // TF_FinishOperation should fail if the shape of the added operation cannot
      // be inferred.
      TF_Status* status = TF_NewStatus();
      TF_Graph* graph = TF_NewGraph();
    
      // Create this failure by trying to add two nodes with incompatible shapes
      // (A tensor with shape [2] and a tensor with shape [3] cannot be added).
      const char data[] = {1, 2, 3};
      const int64_t vec2_dims[] = {2};
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Mon Nov 17 00:00:38 UTC 2025
    - 97K bytes
    - Viewed (0)
  5. ci/official/utilities/rename_and_verify_wheels.sh

    fi
    if [[ "$TFCI_WHL_IMPORT_TEST_ENABLE" == "1" ]]; then
      "$python" -c 'import tensorflow as tf; t1=tf.constant([1,2,3,4]); t2=tf.constant([5,6,7,8]); print(tf.add(t1,t2).shape)'
      "$python" -c 'import sys; import tensorflow as tf; sys.exit(0 if "keras" in tf.keras.__name__ else 1)'
    fi
    # Import tf nightly wheel built with numpy2 from PyPI in numpy1 env for testing.
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Mon Sep 22 21:39:32 UTC 2025
    - 4.4K bytes
    - Viewed (0)
  6. tensorflow/c/c_test_util.cc

      TF_AddInput(desc, r);
      return TF_FinishOperation(desc, s);
    }
    
    TF_Operation* RandomUniform(TF_Operation* shape, TF_DataType dtype,
                                TF_Graph* graph, TF_Status* s) {
      TF_OperationDescription* desc =
          TF_NewOperation(graph, "RandomUniform", "random_uniform");
      TF_AddInput(desc, {shape, 0});
      TF_SetAttrType(desc, "dtype", dtype);
      return TF_FinishOperation(desc, s);
    }
    
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Sat Oct 04 05:55:32 UTC 2025
    - 17.8K bytes
    - Viewed (1)
  7. RELEASE.md

        *   Start enforcing input shape assumptions when calling Functional API
            Keras models. This may potentially break some users, in case there is a
            mismatch between the shape used when creating `Input` objects in a
            Functional model, and the shape of the data passed to that model. You
            can fix this mismatch by either calling the model with correctly-shaped
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Tue Oct 28 22:27:41 UTC 2025
    - 740.4K bytes
    - Viewed (3)
  8. docs/en/docs/advanced/security/oauth2-scopes.md

    {* ../../docs_src/security/tutorial005_an_py310.py hl[106,108:116] *}
    
    ## Verify the `username` and data shape { #verify-the-username-and-data-shape }
    
    We verify that we get a `username`, and extract the scopes.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 10:49:48 UTC 2025
    - 13.5K bytes
    - Viewed (0)
  9. docs/en/docs/tutorial/dependencies/index.md

    You just pass it to `Depends` and **FastAPI** knows how to do the rest.
    
    ///
    
    ## Share `Annotated` dependencies { #share-annotated-dependencies }
    
    In the examples above, you see that there's a tiny bit of **code duplication**.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sun Aug 31 09:15:41 UTC 2025
    - 9.6K bytes
    - Viewed (0)
  10. docs/en/docs/tutorial/schema-extra-example.md

    And Swagger UI has supported this particular `examples` field for a while. So, you can use it to **show** different **examples in the docs UI**.
    
    The shape of this OpenAPI-specific field `examples` is a `dict` with **multiple examples** (instead of a `list`), each with extra information that will be added to **OpenAPI** too.
    
    Registered: Sun Dec 28 07:19:09 UTC 2025
    - Last Modified: Sat Dec 20 15:55:38 UTC 2025
    - 8.9K bytes
    - Viewed (0)
Back to top