Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 112 for device_ (0.06 sec)

  1. tensorflow/c/eager/parallel_device/parallel_device_lib.cc

      }
    }
    
    ParallelDevice::ParallelDevice(const std::vector<std::string>& devices,
                                   bool is_async, int in_flight_nodes_limit)
        : underlying_devices_(devices),
          default_cancellation_manager_(absl::make_unique<CancellationManager>()) {
      device_threads_.reserve(devices.size());
      for (int device_index = 0; device_index < devices.size(); ++device_index) {
        device_threads_.emplace_back(new DeviceThread(
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 25.9K bytes
    - Viewed (0)
  2. tensorflow/c/eager/c_api.cc

        TF_Status status;
        // Let this custom device choose the device to pin this op on if it
        // implements the pinning function.
        if (device_.shall_pin_to_this_device != nullptr) {
          return device_.shall_pin_to_this_device(tensorflow::wrap(op), &status);
        }
        return errors::Unimplemented("No custom device pinning implementation.");
      }
    
     private:
      TFE_Context* context_;
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 43.9K bytes
    - Viewed (0)
  3. tensorflow/c/eager/parallel_device/parallel_device_lib.h

     private:
      ParallelTensor(const ParallelDevice& device,
                     std::vector<TensorHandlePtr> tensors,
                     absl::Span<const int64_t> shape, const TF_DataType dtype)
          : device_(device),
            tensors_(std::move(tensors)),
            shape_(std::vector<int64_t>(shape.begin(), shape.end())),
            dtype_(dtype) {}
      ParallelTensor(const ParallelDevice& device,
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 13.1K bytes
    - Viewed (0)
  4. tensorflow/c/eager/c_api_experimental.h

    //
    // device_info is an opaque caller-defined type stored with the custom device
    // which is passed to the functions referenced in the TFE_CustomDevice struct
    // `device` (execute, delete_device, etc.). It can for example contain the
    // names of wrapped devices.
    //
    // There are currently no graph semantics implemented for registered custom
    // devices, so executing tf.functions which contain operations placed on the
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Wed Feb 21 22:37:46 UTC 2024
    - 39.5K bytes
    - Viewed (0)
  5. tensorflow/c/eager/immediate_execution_tensor_handle.h

      // devices.
      virtual absl::Status Dim(int dim_index, int64_t* dim) const = 0;
    
      // Returns the device which created the handle.
      virtual const char* DeviceName(absl::Status* status) const = 0;
      // Returns the device where the tensor was placed.
      virtual const char* BackingDeviceName(absl::Status* status) const = 0;
      // Returns the device type which created the handle.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 4.3K bytes
    - Viewed (0)
  6. tensorflow/c/eager/immediate_execution_context.h

      virtual bool UsesTFRT() = 0;
    
      // List attributes of available devices
      virtual void ListDevices(std::vector<DeviceAttributes>* devices) = 0;
    
      // Add `devices` into context's device manager. Context's device manager
      // will take ownership and maintain devices' lifetime.
      virtual absl::Status AddDevices(
          std::vector<std::unique_ptr<Device>> devices) = 0;
    
      // Block until all pending nodes are finished.
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 12.3K bytes
    - Viewed (0)
  7. tensorflow/c/eager/c_api_experimental.cc

      // in an initialized context.
      for (auto d = devices.begin(); d != devices.end();) {
        if (absl::StrContains(d->get()->name(), "CPU:0")) {
          d = devices.erase(d);
        } else {
          ++d;
        }
      }
    
      status->status = tensorflow::unwrap(ctx)->AddDevices(std::move(devices));
    }
    
    void TFE_InsertConfigKeyValue(TFE_Context* ctx, const char* key,
                                  const char* value, TF_Status* status) {
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 35.9K bytes
    - Viewed (0)
  8. tensorflow/c/eager/parallel_device/parallel_device_test.cc

          TFE_ContextListDevices(context.get(), status.get()), TF_DeleteDeviceList);
      ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get());
      bool has_tpu = false;
      for (int device_index = 0; device_index < TF_DeviceListCount(devices.get());
           ++device_index) {
        std::string device_type =
            TF_DeviceListType(devices.get(), device_index, status.get());
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Tue Aug 06 23:56:17 UTC 2024
    - 29.4K bytes
    - Viewed (0)
  9. android/guava/src/com/google/common/base/Ascii.java

       *
       * @since 8.0
       */
      public static final byte DLE = 16;
    
      /**
       * Device Control 1. Characters for the control of ancillary devices associated with data
       * processing or telecommunication systems, more especially switching devices "on" or "off." (If a
       * single "stop" control is required to interrupt or turn off ancillary devices, DC4 is the
       * preferred assignment.)
       *
       * @since 8.0
       */
    Registered: Fri Nov 01 12:43:10 UTC 2024
    - Last Modified: Fri Aug 02 13:50:22 UTC 2024
    - 21.7K bytes
    - Viewed (0)
  10. tensorflow/c/eager/dlpack.cc

      DeviceNameUtils::ParsedName parsed_name;
      tensorflow::DeviceNameUtils::ParseFullName(device_name, &parsed_name);
      std::string device_type = parsed_name.type;
      int device_id = 0;
      if (parsed_name.has_id) {
        device_id = parsed_name.id;
      }
    
      ctx.device_id = device_id;
      if (device_type == "CPU") {
        ctx.device_type = DLDeviceType::kDLCPU;
      } else if (device_type == "GPU") {
    #if TENSORFLOW_USE_ROCM
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 12.9K bytes
    - Viewed (0)
Back to top