- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 103 for CPU (0.03 sec)
-
docs/metrics/prometheus/list.md
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Tue Aug 12 18:20:36 UTC 2025 - 43.4K bytes - Viewed (0) -
cmd/metrics-resource.go
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Sun Mar 30 00:56:02 UTC 2025 - 17.2K bytes - Viewed (0) -
.github/bot_config.yml
Therefore on any CPU that does not have these instruction sets, either CPU or GPU version of TF will fail to load. Apparently, your CPU model does not support AVX instruction sets. You can still use TensorFlow with the alternatives given below: * Try Google Colab to use TensorFlow.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Jun 30 16:38:59 UTC 2025 - 4K bytes - Viewed (0) -
.bazelrc
# elinux_aarch64: Embedded Linux options for aarch64 (ARM64) CPU support. # elinux_armhf: Embedded Linux options for armhf (ARMv7) CPU support. # # Release build options (for all operating systems) # release_base: Common options for all builds on all operating systems. # release_cpu_linux: Toolchain and CUDA options for Linux CPU builds.
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Fri Aug 22 21:03:34 UTC 2025 - 56K bytes - Viewed (0) -
src/main/java/org/codelibs/fess/app/web/api/admin/stats/ApiAdminStatsAction.java
/** * Data transfer object representing process CPU statistics. */ public static class ProcessCpuObj { /** * Default constructor. */ public ProcessCpuObj() { // Default constructor } /** CPU usage percentage for the process. */ public short percent; /** Total CPU time used by the process in milliseconds. */
Registered: Thu Sep 04 12:52:25 UTC 2025 - Last Modified: Thu Jul 17 08:28:31 UTC 2025 - 19.7K bytes - Viewed (0) -
README.md
A smaller CPU-only package is also available: ``` $ pip install tensorflow-cpu ``` To update TensorFlow to the latest version, add `--upgrade` flag to the above commands. *Nightly binaries are available for testing using the [tf-nightly](https://pypi.python.org/pypi/tf-nightly) and [tf-nightly-cpu](https://pypi.python.org/pypi/tf-nightly-cpu) packages on PyPI.*
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Fri Jul 18 14:09:03 UTC 2025 - 11.6K bytes - Viewed (0) -
cmd/update.go
cpuMap[cpus[i].PhysicalID] = struct{}{} coreMap[cpus[i].CoreID] = struct{}{} } cpu := cpus[0] uaAppend(" CPU ", fmt.Sprintf("(total_cpus:%d, total_cores:%d; vendor:%s; family:%s; model:%s; stepping:%d; model_name:%s)", len(cpuMap), len(coreMap), cpu.VendorID, cpu.Family, cpu.Model, cpu.Stepping, cpu.ModelName)) } uaAppend(")", "") return strings.Join(userAgentParts, "") }
Registered: Sun Sep 07 19:28:11 UTC 2025 - Last Modified: Tue Aug 12 18:20:36 UTC 2025 - 18.9K bytes - Viewed (0) -
ci/official/envs/linux_arm64
TFCI_BAZEL_COMMON_ARGS="--repo_env=HERMETIC_PYTHON_VERSION=$TFCI_PYTHON_VERSION --repo_env=USE_PYWRAP_RULES=True --config release_arm64_linux" TFCI_BAZEL_TARGET_SELECTING_CONFIG_PREFIX=linux_arm64 # Note: this is not set to "--cpu", because that changes the package name # to tensorflow_cpu. These ARM builds are supposed to have the name "tensorflow" # despite lacking Nvidia CUDA support. TFCI_BUILD_PIP_PACKAGE_WHEEL_NAME_ARG="--repo_env=WHEEL_NAME=tensorflow"
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Wed Jun 04 01:09:09 UTC 2025 - 1.6K bytes - Viewed (0) -
docs/es/docs/deployment/concepts.md
En ese caso, podría ser mejor tener solo 2 servidores y usar un mayor porcentaje de sus recursos (CPU, memoria, disco, ancho de banda de red, etc.).
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 19.3K bytes - Viewed (0) -
docs/pt/docs/deployment/concepts.md
Nesse caso, seria melhor ter apenas 2 servidores e usar uma porcentagem maior de seus recursos (CPU, memória, disco, largura de banda de rede, etc).
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun May 11 13:37:26 UTC 2025 - 19.7K bytes - Viewed (0)