Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 60 for attributes (0.09 sec)

  1. istioctl/pkg/writer/table/writer.go

    type Cell struct {
    	Value      string
    	Attributes []color.Attribute
    }
    
    type Row struct {
    	Cells []Cell
    }
    
    func NewCell(value string, attributes ...color.Attribute) Cell {
    	attrs := append([]color.Attribute{}, attributes...)
    	return Cell{value, attrs}
    }
    
    func (cell Cell) String() string {
    	if len(cell.Attributes) == 0 {
    		return cell.Value
    	}
    	s := color.New(cell.Attributes...)
    	s.EnableColor()
    Registered: Wed Nov 06 22:53:10 UTC 2024
    - Last Modified: Wed Nov 06 09:43:25 UTC 2024
    - 2.7K bytes
    - Viewed (0)
  2. tensorflow/c/eager/parallel_device/parallel_device_lib.cc

                            const char* operation_name,
                            const TFE_OpAttrs* attributes, int expected_max_outputs,
                            TF_Status* status) const {
      std::vector<PartialTensorShape> expected_output_shapes(expected_max_outputs);
      StartExecute(context, inputs, operation_name, attributes,
                   expected_max_outputs, *default_cancellation_manager_);
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 25.9K bytes
    - Viewed (0)
  3. docs/en/docs/tutorial/body-fields.md

    
    /// warning
    
    Notice that `Field` is imported directly from `pydantic`, not from `fastapi` as are all the rest (`Query`, `Path`, `Body`, etc).
    
    ///
    
    ## Declare model attributes
    
    You can then use `Field` with model attributes:
    
    {* ../../docs_src/body_fields/tutorial001_an_py310.py hl[11:14] *}
    
    `Field` works the same way as `Query`, `Path` and `Body`, it has all the same parameters, etc.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 27 17:01:18 UTC 2024
    - 2.2K bytes
    - Viewed (0)
  4. build-logic-commons/basics/src/main/kotlin/gradlebuild/basics/classanalysis/AnalyzeAndShade.kt

    private
    val zipEntryBaseTimestamp = LocalDateTime.of(1980, 2, 1, 0, 0, 0)
        .atZone(ZoneId.systemDefault()).toInstant().toEpochMilli()
    
    
    object Attributes {
        val artifactType = Attribute.of("artifactType", String::class.java)
        val minified = Attribute.of("minified", Boolean::class.javaObjectType)
    }
    
    
    class JarAnalyzer(
        private val shadowPackage: String,
        private val keepPackages: Set<String>,
    Registered: Wed Nov 06 11:36:14 UTC 2024
    - Last Modified: Mon Oct 28 12:55:30 UTC 2024
    - 6.8K bytes
    - Viewed (0)
  5. docs/en/docs/tutorial/body.md

    ## Create your data model
    
    Then you declare your data model as a class that inherits from `BaseModel`.
    
    Use standard Python types for all the attributes:
    
    {* ../../docs_src/body/tutorial001_py310.py hl[5:9] *}
    
    
    The same as when declaring query parameters, when a model attribute has a default value, it is not required. Otherwise, it is required. Use `None` to make it just optional.
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 27 16:58:19 UTC 2024
    - 6.6K bytes
    - Viewed (0)
  6. src/main/java/org/codelibs/fess/crawler/transformer/FessXpathTransformer.java

                    }
                    final NamedNodeMap attributes = imgNode.getAttributes();
                    final String thumbnailUrl = getThumbnailSrc(responseData.getUrl(), attributes);
                    final Integer height = getAttributeAsInteger(attributes, "height");
                    final Integer width = getAttributeAsInteger(attributes, "width");
                    if (!fessConfig.isThumbnailHtmlImageUrl(thumbnailUrl)) {
    Registered: Thu Oct 31 13:40:30 UTC 2024
    - Last Modified: Thu Oct 24 13:01:38 UTC 2024
    - 42.9K bytes
    - Viewed (0)
  7. tensorflow/c/eager/parallel_device/parallel_device_lib.h

      // its corresponding inputs from the input ParallelTensors. Wraps the
      // resulting per-device and per-output TFE_TensorHandles into one
      // ParallelTensor per output of the original operation.
      //
      // Attributes are forwarded to executed operations unmodified.
      //
      // The returned optional has a value if and only if `status` evaluates to
      // TF_OK. Bad statuses are forwarded from underlying `TFE_Execute` calls, or
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 13.1K bytes
    - Viewed (0)
  8. tensorflow/c/eager/parallel_device/parallel_device.cc

        const ParallelDevice& parallel_device,
        const std::string& parallel_device_name, TFE_Context* context,
        std::vector<MaybeParallelTensorUnowned> inputs, const char* operation_name,
        const TFE_OpAttrs* attributes, int expected_max_outputs,
        TF_Status* status) {
      absl::optional<std::vector<MaybeParallelTensorOwned>> result;
      // TODO(allenl): We should remove "TPU" from these op names at the very least,
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Mon Oct 21 04:14:14 UTC 2024
    - 18.3K bytes
    - Viewed (0)
  9. src/main/webapp/js/admin/popper.min.js.map

    'right' ? -1 : 1;\n    styles[sideA] = top * invertTop;\n    styles[sideB] = left * invertLeft;\n    styles.willChange = `${sideA}, ${sideB}`;\n  }\n\n  // Attributes\n  const attributes = {\n    'x-placement': data.placement,\n  };\n\n  // Update `data` attributes, styles and arrowStyles\n  data.attributes = { ...attributes, ...data.attributes };\n  data.styles = { ...styles, ...data.styles };\n  data.arrowStyles = { ...data.offsets.arrow, ...data.arrowStyles };\n\n  return data;\n}\n","import getOppositePlacement...
    Registered: Thu Oct 31 13:40:30 UTC 2024
    - Last Modified: Sat Oct 26 01:49:09 UTC 2024
    - 120.9K bytes
    - Viewed (0)
  10. docs/en/docs/tutorial/encoder.md

    The same way, this database wouldn't receive a Pydantic model (an object with attributes), only a `dict`.
    
    You can use `jsonable_encoder` for that.
    
    It receives an object, like a Pydantic model, and returns a JSON compatible version:
    
    {* ../../docs_src/encoder/tutorial001_py310.py hl[4,21] *}
    
    Registered: Sun Nov 03 07:19:11 UTC 2024
    - Last Modified: Sun Oct 27 23:31:16 UTC 2024
    - 1.6K bytes
    - Viewed (0)
Back to top