Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 4 of 4 for B_vals (0.04 sec)

  1. tensorflow/c/eager/gradient_checker_test.cc

    TEST_P(GradientCheckerTest, TestMatMul) {
      float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f};
      int64_t A_dims[] = {2, 2};
      AbstractTensorHandlePtr A;
      {
        AbstractTensorHandle* A_raw;
        absl::Status s = TestTensorHandleWithDims<float, TF_FLOAT>(
            ctx_.get(), A_vals, A_dims, 2, &A_raw);
        ASSERT_EQ(errors::OK, s.code()) << s.message();
        A.reset(A_raw);
      }
      float B_vals[] = {.5f, -1.0f, 1.0f, 1.0f};
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 6.5K bytes
    - Viewed (0)
  2. tensorflow/c/eager/c_api_unified_experimental_test.cc

             TF_TensorByteSize(result_tensor));
    
      // Build expected result & verify.
      float e_vals[] = {19.0f, 22.0f, 43.0f, 50.0f};
    
      int data_len = 4;  // length of e_vals
      for (int i = 0; i < data_len; i++) {
        EXPECT_EQ(result_data[i], e_vals[i]);
      }
    
      TF_DeleteTensor(result_tensor);
      TF_DeleteAbstractTensor(result);
      TF_DeleteOutputList(o);
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 39.1K bytes
    - Viewed (0)
  3. tensorflow/c/eager/gradient_checker.cc

      AbstractTensorHandlePtr sum_dims;
      {
        vector<int32_t> vals(num_dims_out);
        int64_t vals_shape[] = {num_dims_out};
        Range(&vals, 0, num_dims_out);
        AbstractTensorHandle* sum_dims_raw = nullptr;
        TF_RETURN_IF_ERROR(TestTensorHandleWithDims<int32_t, TF_INT32>(
            ctx, vals.data(), vals_shape, 1, &sum_dims_raw));
        sum_dims.reset(sum_dims_raw);
      }
    
    Registered: Tue Nov 05 12:39:12 UTC 2024
    - Last Modified: Sat Oct 12 05:11:17 UTC 2024
    - 7.3K bytes
    - Viewed (0)
  4. cmd/batch-handlers.go

    					gr.Close()
    				},
    			}
    
    			opts, err := batchReplicationOpts(ctx, "", gr.ObjInfo)
    			if err != nil {
    				batchLogIf(ctx, err)
    				continue
    			}
    
    			for k, vals := range opts.Header() {
    				for _, v := range vals {
    					snowballObj.Headers.Add(k, v)
    				}
    			}
    
    			input <- snowballObj
    		}
    	}()
    
    	// Collect and upload all entries.
    Registered: Sun Nov 03 19:28:11 UTC 2024
    - Last Modified: Fri Oct 18 15:32:09 UTC 2024
    - 62.2K bytes
    - Viewed (0)
Back to top