- Sort Score
- Result 10 results
- Languages All
Results 1 - 3 of 3 for totient (0.14 sec)
-
lib/fips140/v1.0.0.zip
of key // generation and return an error if it fails. See [checkPrivateKey]. return newPrivateKey(N, 65537, d, P, Q) } } // errDivisorTooLarge is returned by [totient] when gcd(p-1, q-1) is too large. var errDivisorTooLarge = errors.New("divisor too large") // totient computes the Carmichael totient function λ(N) = lcm(p-1, q-1). func totient(p, q *bigmod.Modulus) (*bigmod.Modulus, error) { a, b := p.Nat().SubOne(p), q.Nat().SubOne(q) // lcm(a, b) = a×b / gcd(a, b) = a × (b / gcd(a, b)) // Our GCD...
Registered: Tue Sep 09 11:13:09 UTC 2025 - Last Modified: Wed Jan 29 15:10:35 UTC 2025 - 635K bytes - Viewed (0) -
src/main/webapp/css/admin/bootstrap.min.css.map
$divisor == 0 {\n @error \"Cannot divide by 0\";\n }\n $remainder: $dividend;\n $result: 0;\n $factor: 10;\n @while ($remainder > 0 and $precision >= 0) {\n $quotient: 0;\n @while ($remainder >= $divisor) {\n $remainder: $remainder - $divisor;\n $quotient: $quotient + 1;\n }\n $result: $result * 10 + $quotient;\n $factor: $factor * .1;\n $remainder: $remainder * 10;\n $precision: $precision - 1;\n @if ($precision < 0 and $remainder >= $divisor * 5) {\n $result:...
Registered: Thu Sep 04 12:52:25 UTC 2025 - Last Modified: Sat Oct 26 01:49:09 UTC 2024 - 639.3K bytes - Viewed (1) -
src/main/webapp/css/bootstrap.min.css.map
$divisor == 0 {\n @error \"Cannot divide by 0\";\n }\n $remainder: $dividend;\n $result: 0;\n $factor: 10;\n @while ($remainder > 0 and $precision >= 0) {\n $quotient: 0;\n @while ($remainder >= $divisor) {\n $remainder: $remainder - $divisor;\n $quotient: $quotient + 1;\n }\n $result: $result * 10 + $quotient;\n $factor: $factor * .1;\n $remainder: $remainder * 10;\n $precision: $precision - 1;\n @if ($precision < 0 and $remainder >= $divisor * 5) {\n $result:...
Registered: Thu Sep 04 12:52:25 UTC 2025 - Last Modified: Sun Jan 12 06:14:02 UTC 2025 - 575.5K bytes - Viewed (0)