- Sort Score
- Result 10 results
- Languages All
Results 1 - 2 of 2 for shuffled (0.07 sec)
-
RELEASE.md
* `tf.data.Dataset.zip` now supports Python-style zipping, i.e. `Dataset.zip(a, b, c)`. * `tf.data.Dataset.shuffle` now supports `tf.data.UNKNOWN_CARDINALITY` When doing a "full shuffle" using `dataset = dataset.shuffle(dataset.cardinality())`. But remember, a "full shuffle" will load the full dataset into memory so that it can be shuffled, so make sure to only use this with small datasets or datasets of small objects (like filenames). * `tf.math`
Registered: Tue Sep 09 12:39:10 UTC 2025 - Last Modified: Mon Aug 18 20:54:38 UTC 2025 - 740K bytes - Viewed (1) -
lib/fips140/v1.0.0.zip
:= byteorder.BEUint32(src[0:4]) s1 := byteorder.BEUint32(src[4:8]) s2 := byteorder.BEUint32(src[8:12]) s3 := byteorder.BEUint32(src[12:16]) // First round just XORs input with key. s0 ^= xk[0] s1 ^= xk[1] s2 ^= xk[2] s3 ^= xk[3] // Middle rounds shuffle using tables. k := 4 var t0, t1, t2, t3 uint32 for r := 0; r < c.rounds-1; r++ { t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)] t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)]...
Registered: Tue Sep 09 11:13:09 UTC 2025 - Last Modified: Wed Jan 29 15:10:35 UTC 2025 - 635K bytes - Viewed (0)