Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 2 of 2 for highness (0.05 sec)

  1. lib/fips140/v1.0.0-c2097c7c.zip

    n = len(m.nat.limbs). func rr(m *Modulus) *Nat { rr := NewNat().ExpandFor(m) n := uint(len(rr.limbs)) mLen := uint(m.BitLen()) logR := _W * n // We start by computing R = 2^(_W * n) mod m. We can get pretty close, to // 2^⌊log₂m⌋, by setting the highest bit we can without having to reduce. rr.limbs[n-1] = 1 << ((mLen - 1) % _W) // Then we double until we reach 2^(_W * n). for i := mLen - 1; i < logR; i++ { rr.Add(rr, m) } // Next we need to get from R to 2^(_W * n) R mod m (aka from one to R in //...
    Registered: Tue Dec 30 11:13:12 UTC 2025
    - Last Modified: Thu Sep 25 19:53:19 UTC 2025
    - 642.7K bytes
    - Viewed (0)
  2. lib/fips140/v1.1.0-rc1.zip

    n = len(m.nat.limbs). func rr(m *Modulus) *Nat { rr := NewNat().ExpandFor(m) n := uint(len(rr.limbs)) mLen := uint(m.BitLen()) logR := _W * n // We start by computing R = 2^(_W * n) mod m. We can get pretty close, to // 2^⌊log₂m⌋, by setting the highest bit we can without having to reduce. rr.limbs[n-1] = 1 << ((mLen - 1) % _W) // Then we double until we reach 2^(_W * n). for i := mLen - 1; i < logR; i++ { rr.Add(rr, m) } // Next we need to get from R to 2^(_W * n) R mod m (aka from one to R in //...
    Registered: Tue Dec 30 11:13:12 UTC 2025
    - Last Modified: Thu Dec 11 16:27:41 UTC 2025
    - 663K bytes
    - Viewed (0)
Back to top