Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 3 of 3 for empties (0.06 sec)

  1. RELEASE.md

        *   Losses are scaled in canned estimator v2 and not in the optimizers
            anymore. If you are using Estimator + distribution strategy + optimikzer
            v1 then the behavior does not change. This implies that if you are using
            custom estimator with optimizer v2, you have to scale losses. We have
            new utilities to help scale losses `tf.nn.compute_average_loss`,
            `tf.nn.scale_regularization_loss`.
    
    Registered: Tue Dec 30 12:39:10 UTC 2025
    - Last Modified: Tue Oct 28 22:27:41 UTC 2025
    - 740.4K bytes
    - Viewed (3)
  2. lib/fips140/v1.1.0-rc1.zip

    errors.New("crypto/rsa: invalid prime") } if pN.Mul(qN, N).IsZero() != 1 { return errors.New("crypto/rsa: p * q != n") } // Check that de ≡ 1 mod p-1, and de ≡ 1 mod q-1. // // This implies that e is coprime to each p-1 as e has a multiplicative // inverse. Therefore e is coprime to lcm(p-1,q-1) = λ(N). // It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 mod p. Thus a^de ≡ a // mod n for all a coprime to n, as required. // // This checks dP, dQ, and e. pMinus1, err := bigmod.NewModulus(p.Nat().SubOne(p).Bytes(p))...
    Registered: Tue Dec 30 11:13:12 UTC 2025
    - Last Modified: Thu Dec 11 16:27:41 UTC 2025
    - 663K bytes
    - Viewed (0)
  3. lib/fips140/v1.0.0-c2097c7c.zip

    errors.New("crypto/rsa: invalid prime") } if pN.Mul(qN, N).IsZero() != 1 { return errors.New("crypto/rsa: p * q != n") } // Check that de ≡ 1 mod p-1, and de ≡ 1 mod q-1. // // This implies that e is coprime to each p-1 as e has a multiplicative // inverse. Therefore e is coprime to lcm(p-1,q-1) = λ(N). // It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 mod p. Thus a^de ≡ a // mod n for all a coprime to n, as required. // // This checks dP, dQ, and e. We don't check d because it is not actually //...
    Registered: Tue Dec 30 11:13:12 UTC 2025
    - Last Modified: Thu Sep 25 19:53:19 UTC 2025
    - 642.7K bytes
    - Viewed (0)
Back to top