Search Options

Results per page
Sort
Preferred Languages
Advance

Results 1 - 10 of 23 for itype (0.63 sec)

  1. tensorflow/compiler/mlir/lite/flatbuffer_export.cc

        }
        if (ftype.isF64()) {
          return tflite::TensorType_COMPLEX128;
        }
        return Status(absl::StatusCode::kInvalidArgument, "Unsupported type");
      } else if (auto itype = mlir::dyn_cast<mlir::IntegerType>(type)) {
        switch (itype.getWidth()) {
          case 1:
            return tflite::TensorType_BOOL;
          case 4:
            if (itype.isUnsigned()) {
              return Status(absl::StatusCode::kInvalidArgument,
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Wed Jun 12 21:41:49 UTC 2024
    - 164.5K bytes
    - Viewed (0)
  2. platforms/documentation/docs/src/snippets/native-binaries/google-test/groovy/libs/googleTest/1.7.0/include/gtest/internal/gtest-type-util.h

          T41, T42, T43, T44, T45, T46, T47, T48, T49> type;
    };
    
    namespace internal {
    
    # define GTEST_TEMPLATE_ template <typename T> class
    
    // The template "selector" struct TemplateSel<Tmpl> is used to
    // represent Tmpl, which must be a class template with one type
    // parameter, as a type.  TemplateSel<Tmpl>::Bind<T>::type is defined
    // as the type Tmpl<T>.  This allows us to actually instantiate the
    Registered: Wed Jun 12 18:38:38 UTC 2024
    - Last Modified: Mon Nov 27 17:53:42 UTC 2023
    - 181.3K bytes
    - Viewed (0)
  3. testing/performance/src/templates/native-dependents-resources/googleTest/libs/googleTest/1.7.0/include/gtest/internal/gtest-type-util.h

          T41, T42, T43, T44, T45, T46, T47, T48, T49> type;
    };
    
    namespace internal {
    
    # define GTEST_TEMPLATE_ template <typename T> class
    
    // The template "selector" struct TemplateSel<Tmpl> is used to
    // represent Tmpl, which must be a class template with one type
    // parameter, as a type.  TemplateSel<Tmpl>::Bind<T>::type is defined
    // as the type Tmpl<T>.  This allows us to actually instantiate the
    Registered: Wed Jun 12 18:38:38 UTC 2024
    - Last Modified: Thu Apr 04 07:21:38 UTC 2024
    - 181.3K bytes
    - Viewed (0)
  4. tensorflow/compiler/mlir/tensorflow/translate/import_model.cc

            VLOG(1) << "[potentially conservative] Op type `" << node.type_string()
                    << "` is stateful but effects not modelled";
          } else {
            // See if any resource type is used.
            bool resource = false;
            std::function<bool(mlir::Type)> record_resource;
            record_resource = [&](mlir::Type type) {
              type.walk([&](mlir::Type t) {
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Wed May 01 11:17:36 UTC 2024
    - 183.2K bytes
    - Viewed (0)
  5. tensorflow/compiler/mlir/tensorflow/ir/tf_ops_n_z.cc

              dtype == tensorflow::DT_UINT16 || dtype == tensorflow::DT_INT16 ||
              dtype == tensorflow::DT_UINT8 || dtype == tensorflow::DT_INT8 ||
              dtype == tensorflow::DT_HALF || dtype == tensorflow::DT_BFLOAT16 ||
              dtype == tensorflow::DT_FLOAT || dtype == tensorflow::DT_DOUBLE ||
              dtype == tensorflow::DT_COMPLEX64 ||
              dtype == tensorflow::DT_COMPLEX128 || dtype == tensorflow::DT_BOOL) {
            return {};
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Thu May 09 22:07:10 UTC 2024
    - 170.8K bytes
    - Viewed (0)
  6. tensorflow/compiler/mlir/quantization/tensorflow/python/integration_test/quantize_model_test.py

            bias = array_ops.constant(
                np.random.uniform(size=[shapes[1][-1]]), dtype=dtypes.float32
            )
        model = MatmulModel(bias)
        x = array_ops.constant(
            np.random.uniform(size=x_shape), dtype=dtypes.float32
        )
        y = array_ops.constant(
            np.random.uniform(size=y_shape), dtype=dtypes.float32
        )
        if use_kernel:
          model.matmul = model.matmul_with_kernel
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Fri May 17 03:36:50 UTC 2024
    - 235.6K bytes
    - Viewed (0)
  7. tensorflow/compiler/mlir/lite/tests/prepare-composite-functions-tf.mlir

      %5 = "tf.Add"(%arg1, %arg2) : (tensor<8x10xf32>, tensor<8x10xf32>) -> tensor<8x10xf32>
      %6 = "tf.Const"() {_output_shapes = ["tfshape$"], device = "/device:CPU:0", dtype = f32, value = dense<1.000000e+00> : tensor<f32>} : () -> tensor<f32>
      func.return %5, %4, %5, %5, %6 : tensor<8x10xf32>, tensor<?x8x10xf32>, tensor<8x10xf32>, tensor<8x10xf32>, tensor<f32>
    }
    
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Thu May 02 09:41:17 UTC 2024
    - 122.1K bytes
    - Viewed (0)
  8. tensorflow/c/c_api.cc

                metadata.type = TF_ATTR_INT;
              } else if (typestr == "list(float)") {
                metadata.type = TF_ATTR_FLOAT;
              } else if (typestr == "list(bool)") {
                metadata.type = TF_ATTR_BOOL;
              } else if (typestr == "list(type)") {
                metadata.type = TF_ATTR_TYPE;
              } else if (typestr == "list(shape)") {
                metadata.type = TF_ATTR_SHAPE;
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Mon Apr 15 03:35:10 UTC 2024
    - 102.3K bytes
    - Viewed (0)
  9. tensorflow/compiler/jit/extract_outside_compilation_pass.cc

      for (auto* n : arg_nodes) {
        int index;
        TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index));
        DataType dtype;
        TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "T", &dtype));
        (*recv_at_host_dtypes)[index] = dtype;
      }
      for (int i = 0, end = recv_at_host_dtypes->size(); i < end; i++) {
        if ((*recv_at_host_dtypes)[i] == DT_INVALID) {
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Tue Mar 12 06:33:33 UTC 2024
    - 104.7K bytes
    - Viewed (0)
  10. tensorflow/compiler/mlir/lite/tests/legalize-tf.mlir

      %1 = "tf.Const"() {device = "", dtype = f32, value = dense<0.000000e+00>: tensor<16x28xf32>} : () -> tensor<16x28xf32>
      %2 = "tf.Const"() {device = "", dtype = f32, value = dense<0.000000e+00>: tensor<16x16xf32>} : () -> tensor<16x16xf32>
      %3 = "tf.Const"() {device = "", dtype = f32, value = dense<0.000000e+00>: tensor<16xf32>} : () -> tensor<16xf32>
    Registered: Sun Jun 16 05:45:23 UTC 2024
    - Last Modified: Wed Jun 05 01:54:33 UTC 2024
    - 153.4K bytes
    - Viewed (0)
Back to top