- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 24 for std (0.01 sec)
-
tensorflow/c/eager/parallel_device/parallel_device_lib.h
absl::Status Shape(const std::vector<int64_t>** shape) const; TF_DataType dtype() const { return dtype_; } // Sets its output argument to a summary of the values of this tensor on every // component device. absl::Status SummarizeValue(std::string& summary); std::vector<TensorHandlePtr> release_tensors() { return std::move(tensors_); } std::vector<TFE_TensorHandle*> tensors() const {
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 13.1K bytes - Viewed (0) -
tensorflow/c/eager/custom_device_test.cc
} TEST(CUSTOM_DEVICE, MakeVariable) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TFE_Context, decltype(&TFE_DeleteContext)> context(
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Thu Aug 27 23:39:24 UTC 2020 - 18.4K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_test.cc
namespace parallel_device { using ::testing::HasSubstr; TEST(PARALLEL_DEVICE, TestBasicCPU) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); std::unique_ptr<TFE_ContextOptions, decltype(&TFE_DeleteContextOptions)> opts( TFE_NewContextOptions(), TFE_DeleteContextOptions); std::unique_ptr<TF_Buffer, decltype(&TF_DeleteBuffer)> config( TF_CreateConfig(
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Aug 06 23:56:17 UTC 2024 - 29.4K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device.cc
public: NamedParallelDevice(const std::string& name, std::unique_ptr<ParallelDevice> parallel_device) : device_name_(name), parallel_device_(std::move(parallel_device)) {} const std::string& name() const { return device_name_; } const ParallelDevice& device() const { return *parallel_device_; } private: std::string device_name_; std::unique_ptr<ParallelDevice> parallel_device_; };
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 18.3K bytes - Viewed (0) -
tensorflow/c/c_api_function.cc
// Process inputs. std::vector<tensorflow::OutputTensor> input_tensors; std::unordered_map<const Node*, std::vector<int>> input_nodes; status->status = tensorflow::ProcessInputs(fn_body, fn_name, ninputs, inputs, &input_tensors, &input_nodes); if (TF_GetCode(status) != TF_OK) return nullptr; // Process outputs. std::vector<tensorflow::OutputTensor> output_tensors;
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 16:27:48 UTC 2024 - 13.7K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib_test.cc
vector_handles.push_back(std::move(two_vector)); vector_handles.push_back(std::move(three_vector)); std::unique_ptr<ParallelTensor> unknown_length_vector = ParallelTensor::FromTensorHandles( parallel_device, std::move(vector_handles), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); const std::vector<int64_t>* shape; TF_ASSERT_OK(unknown_length_vector->Shape(&shape));
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 15.6K bytes - Viewed (0) -
tensorflow/c/eager/parallel_device/parallel_device_lib.cc
} } absl::optional<std::vector<std::unique_ptr<ParallelTensor>>> ParallelDevice::Join( const std::vector<PartialTensorShape>& expected_output_shapes, TF_Status* status) const { absl::optional<std::vector<std::unique_ptr<ParallelTensor>>> result; // Compute per-device per-output tensors std::vector<std::vector<TensorHandlePtr>> per_device_output_tensors;
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Mon Oct 21 04:14:14 UTC 2024 - 25.9K bytes - Viewed (0) -
tensorflow/c/eager/gradients.cc
const string& op_name) { std::vector<int64_t> input_ids(inputs.size()); std::vector<tensorflow::DataType> input_dtypes(inputs.size()); for (int i = 0; i < inputs.size(); i++) { input_ids[i] = ToId(inputs[i]); input_dtypes[i] = inputs[i]->DataType(); } std::vector<TapeTensor> tape_tensors; tape_tensors.reserve(outputs.size()); for (auto t : outputs) {
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Sat Oct 12 05:11:17 UTC 2024 - 19.7K bytes - Viewed (0) -
tensorflow/c/eager/c_api_test_util.cc
TFE_OpSetAttrString(op, "final_op", "Id", 2); std::vector<int64_t> subdiv_offsets; TFE_OpSetAttrIntList(op, "subdiv_offsets", subdiv_offsets.data(), subdiv_offsets.size()); return op; } TFE_Op* SendOp(TFE_Context* ctx, TFE_TensorHandle* in, const std::string& op_name, const std::string& send_device, const std::string& recv_device,
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Wed Feb 21 22:37:46 UTC 2024 - 23.5K bytes - Viewed (0) -
tensorflow/c/c_api_experimental_test.cc
} // Checks the expected result of shape inference for the given `op`. void CheckOutputShapes( TFE_Op* op, const std::vector<absl::optional<std::vector<int64_t>>>& input_shapes_vec, const std::vector<TF_Tensor*>& input_tensors, const absl::optional<std::vector<int64_t>>& expected_shape) { // Create input_shapes. TF_ShapeAndTypeList* input_shapes =
Registered: Tue Nov 05 12:39:12 UTC 2024 - Last Modified: Tue Jan 17 22:27:52 UTC 2023 - 13.1K bytes - Viewed (0)