- Sort Score
- Result 10 results
- Languages All
Results 1 - 10 of 248 for Learning (0.13 sec)
-
docs/pt/docs/async.md
* **Machine Learning**: Normalmente exige muita multiplicação de matrizes e vetores. Pense numa grande planilha com números e em multiplicar todos eles juntos e ao mesmo tempo.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 23.6K bytes - Viewed (0) -
docs/es/docs/async.md
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 24.7K bytes - Viewed (0) -
docs/en/docs/async.md
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 24K bytes - Viewed (0) -
docs/fr/docs/async.md
* L'apprentissage automatique (ou **Machine Learning**) : cela nécessite de nombreuses multiplications de matrices et vecteurs. Imaginez une énorme feuille de calcul remplie de nombres que vous multiplierez entre eux tous au même moment.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 09:56:21 UTC 2025 - 25.4K bytes - Viewed (0) -
docs/en/data/external_links.yml
link: https://eng.uber.com/ludwig-v0-2/ title: 'Uber: Ludwig v0.2 Adds New Features and Other Improvements to its Deep Learning Toolbox [including a FastAPI server]' - author: Maarten Grootendorst author_link: https://www.linkedin.com/in/mgrootendorst/ link: https://towardsdatascience.com/how-to-deploy-a-machine-learning-model-dc51200fe8cf title: How to Deploy a Machine Learning Model - author: Johannes Gontrum author_link: https://x.com/gntrm link: https://medium.com/@gntrm/jwt-authentication-w...
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 10:49:48 UTC 2025 - 23K bytes - Viewed (0) -
docs/de/docs/tutorial/path-params.md
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 10:29:01 UTC 2025 - 10K bytes - Viewed (0) -
docs/uk/docs/tutorial/path-params.md
/// /// tip | Порада Якщо вам цікаво, "AlexNet", "ResNet" та "LeNet" — це просто назви ML моделей <abbr title="Технічно, архітектури Deep Learning моделей">Machine Learning</abbr>. /// ### Оголосіть *параметр шляху* Потім створіть *параметр шляху* з анотацією типу, використовуючи створений вами клас enum (`ModelName`):
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sun Aug 31 10:29:01 UTC 2025 - 14.1K bytes - Viewed (0) -
docs/fr/docs/tutorial/path-params.md
/// /// tip | Astuce Pour ceux qui se demandent, "AlexNet", "ResNet", et "LeNet" sont juste des noms de <abbr title="Techniquement, des architectures de modèles">modèles</abbr> de Machine Learning. /// ### Déclarer un paramètre de chemin Créez ensuite un *paramètre de chemin* avec une annotation de type désignant l'énumération créée précédemment (`ModelName`) :
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Sat Nov 09 16:39:20 UTC 2024 - 9.8K bytes - Viewed (0) -
docs/ja/docs/tutorial/path-params.md
/// /// tip | 豆知識 "AlexNet"、"ResNet"そして"LeNet"は機械学習<abbr title="Technically, Deep Learning model architectures">モデル</abbr>の名前です。 /// ### *パスパラメータ*の宣言 次に、作成したenumクラスである`ModelName`を使用した型アノテーションをもつ*パスパラメータ*を作成します: {* ../../docs_src/path_params/tutorial005.py hl[16] *} ### ドキュメントの確認
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 10.4K bytes - Viewed (0) -
docs/ru/docs/tutorial/path-params.md
{* ../../docs_src/path_params/tutorial005.py hl[18,21,23] *} Вы отправите клиенту такой JSON-ответ: ```JSON { "model_name": "alexnet", "message": "Deep Learning FTW!" } ``` ## Path-параметры, содержащие пути Предположим, что есть *операция пути* с путем `/files/{file_path}`.
Registered: Sun Sep 07 07:19:17 UTC 2025 - Last Modified: Mon Nov 18 02:25:44 UTC 2024 - 13.9K bytes - Viewed (0)